Pipelined Hardware Video
Compressor & Decompressor

Team: sdmay 24-12

Members: Kareem Eljaam, Caleb Rock, Benjamin Meinders,
Colsen Selk, and Logan McDermott

Client: John Deere (Nathan Francque)

Faculty Advisor: Dr. Joseph Zambreno

Website: https://sdmay24-12.sd.ece.iastate.edu/

https://sdmay24-12.sd.ece.iastate.edu/

Table of Contents

Introduction/BackgrOUnd..........ccccoceiieririninininininieeie ettt 3
| 25g0] 0] (<) s n ISY =1 <) 8 111 8 | ORI 3
INtENAEA USEIS/USES......c.eeeeeeeieeceeeeeeteeteetceteett et s et e ae s e et e sassses st esssssessssssessessesnsessessesns 3
REIATEA COMEEXL.neiieeeeeeeeeeeeeeeeeeeeeeteeeee et esteeeaeeseeeseeesaeesseesseestesssesstesssesssesntesssssstessssseesnes 3
REVISEA DESIENN......eeuiiieiiieeteteeetete ettt ettt a ettt ettt st s e et eaes A
REQUITEIMEILES......cueiuiiiieieteteteesestest ettt sttt e st e s st et et s e s e ssesae st etesassassassenean 4
Engineering Standards.......c.coceereeueeeeeeueeeeceeceeststetetsieset et eeteaees 4
Security Concerns and COUNTEIIMEASULES........ccceveueereruerereririeresesissesesessssesesessssesessssesens 5
DeSIiZN EVOIULION.cviiiiiieiiceecee ettt ettt sttt sttt 5
Implementation Details........ccooeeceeirieeininieeeiee ettt ettt 5
Detailed DESIZIN......cccociiiiririeieieieeeie ettt sttt ettt sttt es 5
RS TITIZ ettt ettt sttt ettt ettt et aese e eene 9
20 0 L6 ST (o}
RESULLS ...ttt et e et e et et e st e s e e e se e s e be b esaeseeseesasensensansessesensens 10

|5y oY= 16 (<A 000] o 1<)« RSOSSN 13
(000] o el LTS3 (o) 0 170 15
PrOZIeSS REVIEW......ceiiiiiiiecitectteect ettt ettt et ettt 15
DiISCUSSION OF VAIUE.....c.eeioeieeeeeeeeeeeeeteeeeetee ettt e steestcesaesssesssesssesssesssesssesssesssssnsesns 15
FULULE SEEPS.....eiteteeeeeeee ettt ettt s et s st b ettt ae 16
APPEIIAICES.....c..eeeeeeeeeeeeneeeerneerereeereeeeeseesesseesssseessssessssessssssessssessssessssssasssnsssssnssssssesssnsasssnes 16
Appendix 1 - Operation ManUAl...........ccoceeeeeeirieieererinieeeeietee et esseese e esssssesesessnes 16
Appendix 2 - DeSign ItEratiONS......cccocvieieieiririririeieieieieieieeee ettt tetsssse e seseseseaeaes 20
Appendix 3 - Other ConSiderations..........ococeeeeeieeeieerineriseecrteesteeste et ene 21

ADPPENAIX £ = COAC....eeiiieneeeieieiririeeceieteie sttt se sttt et se s s sesenens 21

Introduction/Background

Problem Statement

This project’s goal is to increase the amount of computer vision workload that can be
handled by an FPGA while reducing the on-chip RAM usage by using pipelineable
compression and decompression cores.

Intended Users/Uses

This project is intended to be used by John Deere for video processing and computer
vision applications. Computer vision applications often require a large amount of
convolutions to be performed as fast as possible. An FPGA can perform these
operations at near-zero latency. However, it is currently limited by the amount of
RAM available to store line buffers. The intended use of our project is to place a
compression core at the input of each convolutional line buffer and a decompression
core at the output of each convolutional line buffer.

Related Context

As agricultural and construction machinery increases its use of cameras and video,
there is a tremendous need to process and store that data efficiently. John Deere uses
computer vision for many new technologies, such as “See & Spray,” a technology on
John Deere’s new sprayers that utilizes machine learning to differentiate between
crops and weeds. Each sprayer nozzle comes with a camera and sprays the weeds with
weed killer while leaving the crops alone. These advancements in farming technology
are helping to feed the world, and improving the performance of this new technology
advances the previous progress that John Deere has made.

Revised Design

Requirements

Provide a standard image set for testing the algorithm via software to quantify
the loss.

Create lightweight compression and decompression cores that are mappable to
FPGA or ASIC to minimize on-chip RAM usage.

Compression and decompression are to be performed on a live input stream.
The latency should be low enough to allow for near-zero latency computer
vision processing.

Prioritize logic simplicity and pipelineability over compression ratio.

Solution should be fully pipelineable, a key requirement to this is having each
encoded pixel of a predetermined size.

Demonstration should show HDMI output from the FPGA to a 1920x1080
resolution monitor.

Engineering Standards

Python, Java, and C++ for basic prototyping of the compression algorithms
VHDL for the FPGA IPs

Vitis HLS

LZW video compression

BWT data transformation

AXI-Stream Video Formatting

HDMI for transmitting the video from input and to output
Data-size standardized formats (the Byte)

Python for basic prototyping of the compression algorithms
Java and C++ as well.

VHDL for the FPGA IPs

Vitis HLS

LZW video compression

BWT data transformation

AXI-Stream Video Formatting

HDMI for transmitting the video from input and to output
Data-size standardized formats (the Byte)

Security Concerns and Countermeasures

The only security concern for our project would be any third-party IPs we used hiding
secret code that steals data streamed through it. This concern is counter-measured by
using only IPs from reputable sources (Such as AMD).

Design Evolution

Our initial design had LZW compression and decompression, but our testing showed
that this algorithm would not be sufficient for compression with images, let alone
video. We decided to move to using pre-made compression and decompression IPs
from the XILINX marketplace, and modifying those to fit with our near-zero latency
HDMI passthrough system. This approach failed because of the extreme cost of these
IPs. We also tried to import the Vitis HLS Data Compression Library into our project.
While we could generate IPs using the HLS tool, we encountered problems with FPGA
space and input/output compatibility. Finally, we decided to create our own IPs with
simple compression and decompression schemes and successfully implemented this
strategy. We also made a design decision to do the compression and decompression
after the video stream had already made it through the VDMA. We made this decision
because our new compression had a fixed size of 16 bits on the output. The original
potential use of the VDMA was to use software to read the VDMA and provide metrics;
however, since we have a fixed compression ratio, we no longer have to collect that
data.

Implementation Details

Detailed Design

To describe our final implementation, we divided the discussion into three parts, each
with its own visual aid. The sections are built top-down, starting from our top-level
demonstration setup, then a flowchart outlining the functionality of our board, and
lastly, we highlighted the details of our compression scheme below.

Demonstration

Monitor #1

PC HDMI Output Post Pipeline HDMI Data

.

E . pC HDMI Output—> HDMI Splitter PC HDMI Output D'“"e“tlﬁvh z7-
PC L
Power Source

Figure 1

Figure 1is a diagram that shows the top-level layout of our demonstration. Our
project emphasized a need for very low-latency compression. To highlight our
system's near-zero latency, we chose to demonstrate the HDMI video before and after
the compression/decompression pipeline. This approach allows us to inspect any
visual latency and analyze the effects of our loss side-by-side with the raw video
version. Monitor 1 displays the video from the video source PC, and Monitor 2 displays
the video from the output of our hardware pipeline. The demonstration runs using our
Vivado-generated hardware platform file (.xsa) and our C source code from Vitis to
flash the board with the hardware/software we designed while the PC drives the HDMI
source.

Hardware Design

Zybo Zynq-?OOD Zynq7 l

Z7-10 ARM/FPGA [snec
SoC l

HDMI Output Sop) RGB to DVI ﬂxulri'gélr]egr‘:lt to RS Decorgg:gssmn

Figure 2

Figure 2 lays out the hardware design and demonstrates the different components we
used to build the pipeline. We chose the Zybo Z7-10 because it supports interfacing
with HDMI Input and Output. The Zybo Z7-10 is also home to a Zyng-7000 ARM/FPGA
SoC that allows us to interface with and map our solution to an FPGA. The plan for our
design was to establish an HDMI passthrough and then add in our custom cores as
needed. The pipeline starts by taking HDMI input and converting it to RGB using an IP
provided by Vivado. We then take the raw RGB data and convert it into an AXI-Stream
using other IP provided by Vivado. The Zynq7 processing system was initially used in
our project to collect performance metrics. However, the final implementation only
uses the processing system for configuring the VDMA and Video Timing Controllers
(not included in the schematic above). Our design runs the compression and
decompression after reading the frame buffer from the VDMA. Details regarding the
compression scheme are outlined below in Figure 3. After the compression and
decompression, the AXI-Stream must be converted back into HDMI output. To do this,
we used the AXI-Stream to Video Out IP and the RGB to DVI IP to go from AXI-Stream
to HDMI data for output from the Zybo Z7-10.

Compression Scheme

23122121/20/19)18|17(16/15(14(13/12|11(10, 9|8 |7 |6 |54 |3]|2]1]0
15({14|13]12]11{10[{ 9| 8
Input Data

A 4

Compression IP

15|14(13|12|{11|10|{9 |8 | 7|6 | 5|4 [3]|2|1]|0
15/14(13]|12[{11|10
Encoded Data (After Compression IP)

Decompression IP

|

Output Data (After Decompression IP)
Black background with white font is approximated data

Figure 3

Figure 3 shows the compression scheme used in our final implementation. The
algorithms are simple yet effective, especially when considering the emphasis in the
requirements placed on our solution to be lightweight and logically simple. This
compression scheme drops the least significant three bits for the Red and Blue
channels and the bottom two least significant bits from the Green channel. This
approach allows the amount of RAM needed to store the data to be only 2/3 of the
original RAM needed while only needing one clock cycle to compute this. We chose an
RGB scheme of 5:6:5 instead of 6:5:5 or 5:5:6 because human eyes are more sensitive
to variations in green light than in red or blue. The encoded data is then directly fed
into the decompression IP so it can be converted back to 24 bits. To recover the lost
bits, we simply add “100” for three bits and “10” for two bits. We wrote a software
program that found that “000” may be the most common. However, we still chose
“100” as it is the median value between 1’b000 and 1’b111, and the distribution is near

normal. This compression scheme allows us only to use 2/3 of the original RAM
requirement while achieving an error rate close to 0%. Although we are losing /3 of
the original bits, the furthest off the red and blue component can be from the original
is 4, and the furthest off the green can be is 2. This scheme yields a picture that saves a
lot of data while maintaining the original image effectively by leveraging the most
significant bits.

Testing

Process

Our software testing for LZW compression consisted of a Java implementation
of LZW coded by Benjamin. The LZW compression was also interfaced with a BWT in
python in order to facilitate more compression-efficient results.

For hardware, testing was slightly challenging. One of our primary tests was to
visually inspect to see if our implementation is working, which admittedly is not the
most robust. While debugging our design we also used Internal Logic Analyzers
provided by Vivado that act like miniature oscilloscopes within the FPGA. We
confirmed that our compression/decompression was acting as expected when looking
at the waveforms from the ILAs. The main issue we ran into while testing was having
HDMI not output. There was very rarely an error that did not break HDMI output.

Since the hardware was challenging to test formally, we used software to get
some of our metrics. The compression standards implemented in hardware were also
implemented in software to allow us to see our data loss. We used raw images as the
input of a software program that compared the compressed and decompressed data to
the original data and found the percentage error difference.

10

Results

Our software testing showed that LZW was insufficient to use for compression
because we saw an increase in our raw image size of 50% in the compressed form,
even with a BWT formatting used beforehand. One such test showed a Raw file image
(.RAF) going from 55 to 85 MB of data. We found that the images did not have enough
patterns in the data to be useful for compression by LZW. Because LZW is one of the
only compression algorithms that would be simple enough for our small team to
implement in compression, this prodded us to come up with a plan to either focus on
premade compression algorithms such as those already designed by AMD for the
Zynq-7000 or a simple lossy algorithm for compression and decompression.

newout.txt Properties

eneral Security Details Previous Ve General Security Details PreviousVer General Security Details Previous Ver

I L Ly
Metal.dng J compressed.bxt J newout bt
Type offile: DNG File {.dng) Type of file: Text Document (&) Type offile: Text Document (.txt)
Dpens with: Photos Opens with: E MNotepad Opens with: = Notepad
_ocation: C\cygwinB4\homelbenme! Location: CcygwinG4\home\benmel¢ Location: Chcygwing$home\benmel¢
Size: 38.1 MB (40,055.108 bytes) Size: 60.8 MB (63.823.525 bytes) Size: 30.4 MB (31,911,936 bytes)

Size ondisk: 382 MB (40.058.880 bytes) Size ondisk: 60.8 MB (63,823,872 bytes) Size on disk: 30,4 MB (31.911.956 bytes)

11
Figure 4

Our hardware testing showed the quality and latency of the video coming out of the
FPGA. Figure 5 shows the regular video streaming on the left monitor while the
pipelined and decompressed video stream is on the right. This setup allowed us to see
how the fine details of an image looked the same after the
compression/decompression, but when there was a solid color (such as the sky), some
distortion was introduced.

Figure 5

Figure 6, shown above, pictures the right monitor outputting raw data from the PC
and the left monitor outputting the data after the compression/decompression
pipeline. We are displaying a stopwatch from the laptop in order to identify any
latency. We do not have a specific latency we were trying to meet; however, in this
image, one can see that the HDMI data is going through the pipeline faster than it is
getting to the display of the laptop driving the display. This demonstration meets the
near-zero latency requirement as it supports the entire stream with zero visual lag.

12

=100:01:22,48 00:01:22,48 |

el

Figure 6

Finally, shown below are three formulas that tell us a lot about our design’s
performance. The first calculation is the compression ratio, a metric that profiles how
much data is being saved. We focused more on a fast throughput but still had a ratio of
1.5:1, meaning we only store 2/3 of the original data. The following formula is
throughput. Our system uses a 134 MHz pixel clock and operates on 3 bytes per cycle.
These settings allow our compression and decompression IPs to support up to 402
MB/s, which is more than enough for our use cases. The last formula is how we
enumerate the loss of our data. It compares pre-pipeline and post-pipeline data and
figures out the percentage of error. For images, we take the average error per pixel as
our metric. Figure 8 below shows that our values were within 1 percent of the original
value. This fact means our image is at least 99% “correct.” This metric does not
account for everything when considering lost data. However, it helped us find that
RGB 5:6:5 was our best format and that by dropping less significant bits, our
“correctness” is higher than the amount of data we are losing.

. . Original Data Size
[] = =
Compression Ratio Compressed Data Size 1.5

Pixels # Bytes
eq cycle Pixel

e Throughput = Pixel = 134 MHz x 1 x 3 = 402 *-

13

. P P 1
° PlxelErmr%— (Plpelmepixel Orlgmalpixel) X —zz % 100

Pixel Error Percentage per Image
2.0

1.5

1.0

Pixel Error Percentage

0.5

0.0

1 2

Test Images

Figure 7

Figure 7 displays the values outputted after running three raw test images through our
Python script, which implements the Pixel rrory, €QUALION shown above. As we can see,

the average error percentage per pixel for the 3 test images is below 1%. Considering
that we are compressing the size by 1/3rd of the original image size, having the
average pixel error percentage below 1% is a major success.

Broader Context

Public Health, Safety, and Welfare: This project affects the safety of a John Deere
customer because the video compression/decompression pipeline can be used for
enhanced machine vision capabilities, making the product safer. For example,
compressing video data allows more cameras to be running at once, which can provide
more data for an autonomous system.

Global, Cultural, and Social: As mentioned above, this project gives equipment the
ability to have more cameras, which can improve autonomous capabilities. Autonomy
will be essential to aid in the farm labor shortage, keeping the agricultural industry
efficient and making food accessible to even more people.

Economic: This project decreases the memory needed, thus decreasing the hardware
cost of equipment, allowing manufacturers to decrease production costs and the final
sale price for farmers.

Environmental: With the decreased equipment cost, as mentioned previously,
farmers can invest in equipment for environmentally friendly practices such as
strip-tillers, which reduce soil erosion and increase organic matter in the soil.

14

15

Conclusions

Progress Review

This semester, we began creating the hardware side of the compression by developing
an HDMI passthrough on the Xilinx Zynq-7000 Dev Board platform. At the same time,
the software team began work on getting real-world numbers for the LZW
compression algorithm. The software team's testing of LZW showed poor results and
pivoted the team's approach. After the two teams finished their work, the hardware
team and software team worked on attempting to use various IP's such as those from
AMD, and other 3rd party IP's as well. Those compression IPs given by AMD were
found to be incompatible with the AXI-stream. Our team managed to get a 3rd party
compression algorithm working. However, there was no easy way to decompress from
that algorithm. We determined that the compression algorithm would be useless for a
demo. Our team then worked on creating a simple compression and decompression
algorithm that we used in our final demo. After getting a working version of that
algorithm, we tested various different parameters, like having more compression for
blue values and less compression for red and green values. Given the roadblocks we
have encountered that caused the course of our project to change, our implementation
is excellent. We still managed to produce an implementation that met as many
requirements and constraints as possible in the amount of time we had.

Discussion of Value

First and foremost, we helped our client by proving the idea of near-zero latency
compression and decompression of video is possible using a lightweight FPGA. We
also delivered a working implementation for our client to work with. We provided
insight into creating compression and decompression IPs and the feasibility of
purchasing a premade IP. We also delivered a software program to optimize the
compression loss rate depending on the type of images to be compressed (e.g., dry
farm fields with lots of reds vs. growing farm fields with lots of greens). Finally, we
created an excellent foundation for a future team of engineers to implement a more
robust compression and decompression algorithm in hardware.

16

Future Steps

Our implementation of our FPGA is a perfect starting point for a larger (or another
senior design team) team to write and test more complex pipelined compression and
decompression algorithms than our team of 5 could realistically develop. Larger, more
robust compression and decompression algorithms allow for higher compression
ratios and a lower loss rate while being relatively similar in latency. Given our project
as a starting point, another team would not have to spend any time choosing
hardware and building up the HDMI passthrough and would benefit from the
knowledge we gained regarding purchasable and open-source FPGA solutions.

Appendices

Appendix 1 - Operation Manual
1) Required Materials

Zybo Z7-10
., HDMI Cables
1:2 HDMI Splitter
MicroUSB to USB Cable
PC
2x Power Adapters (Zybo & HDMI Splitter)
2x HDMI Monitors
Vivado 2020.1
Vitis 2020.1
2) Physical Setup
I. Plugin the Zybo board’s power
adapter in port 1 and then connect it to
a nearby outlet.
II. Plugin the micro-USB side of
the micro-USB to USB Cable Port 4
into port 4, then plug in the
USB side into your computer.
III. Plug in the power adapter of the HDMI
splitter and then have it connected to a
nearby outlet.

s NCRETPD METTITY
IV. Connect one of the HDMI cables from @25
your computer to the input port on the

HDMI splitter.

17

V. Connect the second HDMI cable from the output port on the HDMI splitter to
port 3 (HDMI RX) on the Zybo board.
VI. Connect the third HDMI cable from the other output port on the HDMI splitter
to the first monitor’s HDMI port.
VII. Connect the fourth HDMI cable from port 2 (HDMI TX) on the Zybo board to the

second monitor’s HDMI port.

VIII. Finally, make sure that the switch above port 4 on the Zybo board is flipped to
“ON”. You may now proceed to step 3.

3) Start by downloading vitis_ 492_ final.ide.zip from
https://git.ece.iastate.edu/sd/sdmay24-12

4) Open Vitis 2020.1 on your machine (The icon should look like this) :

Best match

I 'd Xihnx Vs 20201

5
el
""l.-I.-

5) Select a workspace to hold all of the associated directories and files from this

project and press launch, if you choose one that has not been created Vitis will create it

for you

Iﬂ Eclipse Launcher x
Select a directory as workspace

Vitis IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: | Ui\operation_manual VH Browse...

[Use this as the default and do not ask again
b Restore other Workspace

b Recent Workspaces

Launch Cancel

https://git.ece.iastate.edu/sd/sdmay24-12

18

6) Once Vitis is open select “Import Project” from the bottom left side of the User
Interface, choose “Vitis project exported .zip file” and select vitis_ 492_ final.ide.zip
(downloaded in step 3)

7) Ensure that all projects are selected and press finish

l wl |

=
Import Vitis Projects

Select a Vitis project archive file,

© Archive File: | U7\492_FINAL_2024\vitis_492 final.ide.zip v Browse.. -

~ @ (= System Projects
v B A Zybo-Z7-10-HDMI_system [design_1_wrapper]
B = Zybo-Z7-10-HDMI [domain_psT_cortexad_0]
w (@ (= Platform Projects
B8 = design_1_wrapper

8) To build select Zybo-Z7-10__HDMI__system [System] and hit the build button

L J
o Assistant 23 T B8R OQOX v= O

v =% Zybo-Z7-10-HDMI_system [System]
W :[E]: Lybo-Z7-10-HDMI [Application]
Debug
. Release
design_1_wrapper [Platform]

9) Now, to launch this vitis application on hardware, ensure the Zybo Z7-10 is fully

set up to the PC, the HDMI interfaces, powered on, and the power adapter is plugged
in. Then, select the Application project from Vitis with a right click, navigate to Run

As, then select “Launch on Hardware (Single Application Debug)”

L Explorer &3

> design_1_wrapper
w E| Zybo-Z7-10-HDMI_system [design_1_wrapper]

>f§:tZ}rbo_""""""' oo

» (= _ide
» (= Debu
& Zybo

x

C I

B

MNew

Mowve To System Project...

Delete
Refresh

Import Sources...

Export as Archive

Build Project

Clean Project

Generate Linker Script
Program FPGA
Create Boot Image
Program Flash

C/C++ Build Settings
Team

Run As
Debug As

Properties

S
P4

o) Assistant E |
~ % Zybo-Z7-10-HDMI_system [System]
o B = am s ares e .- - -

10) The monitor hooked up to the HDMI TX port of the Zybo Z7-10 should now be
displaying the video after it has been compressed and decompressed.

TEF
i
TLF

-

GDE

19

1 Launch on Hardware (Single Application Debug)
2 Launch on Emulater (Single Application Debug)
3 Launch on Hardware (Single Application Debug (GDE))

Run Configurations...

11) A majority of the work we did for this project was on the hardware side. The Vitis
release already contains the hardware platform we developed, but if anyone would like
to edit or inspect our hardware project, it can also be found at
https://git.ece.iastate.edu/sd/sdmay24-12. To launch the project, select the .xpr file

after unzipping the archived project. The steps for updating the hardware platform
file from Vivado to a Vitis project can be found here if interested:
Vitis-In-Depth-Tutorial/Vitis Platform_ Creation/Introduction/02-Edge-AI-ZCU10

stepi.md at 2020.1 - Xilinx/Vitis-In-Depth-Tutorial - GitHub

https://git.ece.iastate.edu/sd/sdmay24-12
https://github.com/Xilinx/Vitis-In-Depth-Tutorial/blob/2020.1/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/step1.md
https://github.com/Xilinx/Vitis-In-Depth-Tutorial/blob/2020.1/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/step1.md

20

Appendix 2 - Design Iterations

To dive deeper into the iterations mentioned earlier, we started the first
semester researching potential compression algorithms that would match project
requirements while matching feasibility concerning the amount of time we have. The
result was to implement an LZW encoder and decoder in C/Java and see which would
be the most efficient to use as an IP in the schematic. Early second semester, we
started to develop the first few iterations of the encoder in parallel with the
production of the HDMI passthrough. The code worked flawlessly with testing, but
once we introduced images into the input, the compression size increased the file size
rather than reduced. To try and make the data more repetitive, which is where LZW
thrives, we tried adding a BWT implementation into the algorithm to rearrange the
data into alphanumeric sorted sequences. This addition did not help. Since the data
worked well with testing, we found that pulling in bytes of data would always be
treated as a signed byte leading to negative ASCII values (they do not exist but were
being created), messing up the encodings. This issue was a challenge we could not
overcome on top of the runtime of the bitstream taking longer than required.

Due to time constraints, we stopped trying to develop an IP with a specific
algorithm. We decided to look for a premade custom IP to add to the project but could
not find one that worked on our FPGA and fit within our allotted budget (all were over
$20,000 and did not allow a free evaluation period). Next, we set out to implement an
open-source Vitis HLS compression scheme by packaging it into an IP Core but faced
challenges of FPGA space and input/output compatibility. We also tried implementing
CCSDS123 compression into our system. We got the Internal Logic Analyzer from
Vivado to show that the CCSDS123 IP was outputting an AXI-Stream. However, there
was little to no documentation on how to decompress CCSDS123. Shifting plans again,
we decided to create our own IP with simple compression and decompression. We
implemented a compression algorithm with a quantization scheme that would
convert RGB 8:8:8 to RGB: 5:6:5. Then we decompressed those values by adding bits
back. We then used our one software program to optimize and quantify the values of
the bits we add back. We decided to add back the middle value of the 2 or 3 missing
bits. This approach means that if 3 bits were removed when compressing, then to
decompress, we will append the bits “100” to the end of the 5 bits to bring it back to 8
bits. In binary, “100” is the middle value of “111” and “000”, which provides a more
neutral approximation.

21

Appendix 3 - Other Considerations

As mentioned in Appendix 2, we considered many other strategies to implement
compression and decompression other than the strategy we used. These strategies
included creating our own IP by writing a VHDL program of a compression algorithm

such as LZW, using a pre-made IP from the XILINX marketplace, and implementing
an open-source compression scheme into a packaged IP.

Appendix 4 - Code

Vivado Block Design

Tt

T

&
i
- :
pminil
L
il
N

Python Code for Testing Average Error Per Pixel:

import rawpy
if __name__ == "_main__ ":
check® = checkl = check2 = check3 = check4 = check5 = check6 = check7 =
totalVarR = totalVarG = totalVarB =
Open the file for image to test
with rawpy.imread('C:/cygwin64/home/benme/491 Project/Java/Image3.NEF")
as raw:
Process image into an object
rgb = raw.postprocess()
height, width, = rgb.shape
Prints width, height, and color channels
print(rgb.shape)
print("Total Pixel Count: " + str(height*width))

for pxlw in range(width):
for pxlh in range(height):

Extract rgb values from pixel map twice

r, g, b = rgb[pxlh, pxlw]

rt, gt, bt = rgb[pxlh, pxlw]

Alter the numbers like compression algorithm

rt ((rt >> 3) << 3) +

gt ((gt >> 2) << 2) +

bt = ((bt >> 3) << 3) +

Add to variance to total

totalVarR += (abs(r - rt)) /

totalVarG += (abs(g - gt)) /

totalvarB += (abs(b - bt)) /
Divide variance of each variable by px count for average
totalVarR = totalvarR / (width * height)
totalVarG = totalVarG / (width * height)
totalVarB = totalvarB / (width * height)
print("Total Variance Red: " + str(totalVarR *))
print("Total Variance Green: " + str(totalVarG *)))
print("Total Variance Blue: " + str(totalvarB *))
print("Total Variance per Pixel: " + str(((totalvarR + totalVarG +

totalvarB) / 3) *)D)

Java Code for the LZW Compression Algorithm from the Initial Design:

void LZW Encoding() {
int keyCount = ©;

HashMap<String, Integer> enc = new HashMap<>(MAX_ENTRIES);

for(; keyCount < ASCII ENTRIES; keyCount++) enc.put("" + (char)keyCount,
keyCount);

try (BufferedInputStream bufferedInputStream = new
BufferedInputStream(new FileInputStream("./Java/Metal.dng"))) {
FileWriter fw = new FileWriter("./Java/compressed.txt");
BufferedWriter bw = new BufferedWriter(fw);
int bytesRead;
byte[] byteBuff = new byte[4096];
Charset charset = Charset.forName("UTF-8");

CharsetDecoder decoder = charset.newDecoder();

while ((bytesRead = bufferedInputStream.read(byteBuff)) != -1) {

String asc = g

for (int i = @; i < byteBuff.length; i++) {
if (byteBuff[i] >= @) asc += (char)(byteBuff[i]);
else asc += (char) (256 + (int)(byteBuff[i]));

int iter 1;
String P = "" + asc.charAt(9);

String encryption = ;

while (iter < asc.length()) {
char C = asc.charAt(iter);

if (enc.containsKey(P + C)) {
P += C;

} else {
int[] code = new int[2];
code[9] ((enc.get(P)) >> 8) & OxFF;
code[1] (enc.get(P)) & OxFF;

get(P) < ASCII_ENTRIES) { encryption += "0" +

else { encryption += (char)code[@] + (char)code[1]; }

if (keyCount < MAX ENTRIES) {
enc.put(P + C, keyCount);

keyCount++;

if (iter == asc.length() - 1) {

int[] code = new int[2];

code[9] ((enc.get(P)) >> 8) & OxFF;

code[1] = (enc.get(P)) & OxFF;

if (enc.get(P) < ASCII ENTRIES) { encryption += "@" +

else { encryption += (char)code[@] + (char)code[1]; }
}

iter++;

}

bw.write(encryption);

}

bw.close();
} catch (IOException e) {
e.printStackTrace();

void LZW Decoding() {

int keyCount = 0;

HashMap<Integer, String> enc = new HashMap<>(MAX_ENTRIES);

for(; keyCount < ASCII ENTRIES; keyCount++) enc.put(keyCount, "" +
(char)keyCount);

try (BufferedInputStream bufferedInputStream = new
BufferedInputStream(new FileInputStream("./Java/compressed.txt™))) {
FileWriter fw = new FileWriter("./newout.txt");
BufferedWriter bw = new BufferedWriter(fw);

int bytesRead;
byte[] buffer = new byte[4096];

while ((bytesRead = bufferedInputStream.read(buffer)) = -1) {

String asc = 5

for (int i = @; i < buffer.length; i++) asc += (char)(buffer[i] &

int[] code = { asc.charAt(@), asc.charAt(1l) };

int iter = 2;

int OLD = ((code[@] << 8) & OxFF) + (code[1] & OxFF);
int NEW;

String encryption = "" + enc.get(OLD);

String S = g

[(]

char C = ;
while (iter < asc.length()) {
code[@] = asc.charAt(iter);
code[1] = asc.charAt(iter + 1);
NEW = ((code[@] << 8) & OxFF) + (code[1l] & OxFF);
if (lenc.containsKey(NEW)) {
S = enc.get(OLD) + C;

} else {

enc.get (NEW);

26

encryption += S;
= S.charAt(9);
enc.put(keyCount, enc.get(OLD) + C);

keyCount++;
OLD = NEW;
iter += 2;
}
bw.write(encryption);
}
bw.close();
} catch (IOException e) {
e.printStackTrace();

