
‭Pipelined Hardware Video‬
‭Compressor & Decompressor‬

‭Team:‬‭sdmay 24-12‬

‭Members:‬‭Kareem Eljaam, Caleb Rock, Benjamin Meinders,‬
‭Colsen Selk, and Logan McDermott‬

‭Client:‬‭John Deere (Nathan Francque)‬

‭Faculty Advisor:‬‭Dr. Joseph Zambreno‬

‭Website:‬‭https://sdmay24-12.sd.ece.iastate.edu/‬

https://sdmay24-12.sd.ece.iastate.edu/

‭2‬

‭Table of Contents‬

‭Introduction/Background‬‭..‬‭3‬
‭Problem‬‭Statement‬‭..‬‭3‬
‭Intended‬‭Users/Uses‬‭...‬‭3‬
‭Related‬‭Context‬‭..‬‭3‬

‭Revised‬‭Design‬‭...‬‭4‬
‭Requirements‬‭...‬‭4‬
‭Engineering‬‭Standards‬‭...‬‭4‬
‭Security‬‭Concerns‬‭and‬‭Countermeasures‬‭..‬‭5‬
‭Design‬‭Evolution‬‭..‬‭5‬

‭Implementation‬‭Details‬‭...‬‭5‬
‭Detailed‬‭Design‬‭..‬‭5‬

‭Testing‬‭...‬‭9‬
‭Process‬‭..‬‭9‬
‭Results‬‭...‬‭10‬

‭Broader‬‭Context‬‭..‬‭1‬‭3‬
‭Conclusions‬‭...‬‭1‬‭5‬

‭Progress‬‭Review‬‭...‬‭1‬‭5‬
‭Discussion‬‭of‬‭Value‬‭..‬‭1‬‭5‬
‭Future‬‭Steps‬‭..‬‭1‬‭6‬

‭Appendices‬‭...‬‭1‬‭6‬
‭Appendix 1 - Operation Manual‬‭………………………………………………………………………………..16‬
‭Appendix‬‭2‬‭-‬‭Design‬‭Iterations‬‭..‬‭20‬
‭Appendix‬‭3‬‭-‬‭Other‬‭Considerations‬‭..‬‭2‬‭1‬
‭Appendix‬‭4‬‭-‬‭Code‬‭..‬‭2‬‭1‬

‭3‬

‭Introduction/Background‬

‭Problem Statement‬

‭This project’s goal is to increase the amount of computer vision workload that can be‬
‭handled by an FPGA while reducing the on-chip RAM usage by using pipelineable‬
‭compression and decompression cores.‬

‭Intended Users/Uses‬

‭This project is intended to be used by John Deere for video processing and computer‬
‭vision applications. Computer vision applications often require a large amount of‬
‭convolutions to be performed as fast as possible. An FPGA can perform these‬
‭operations at near-zero latency. However, it is currently limited by the amount of‬
‭RAM available to store line buffers. The intended use of our project is to place a‬
‭compression core at the input of each convolutional line buffer and a decompression‬
‭core at the output of each convolutional line buffer.‬

‭Related Context‬

‭As agricultural and construction machinery increases its use of cameras and video,‬
‭there is a tremendous need to process and store that data efficiently. John Deere uses‬
‭computer vision for many new technologies, such as “See & Spray,” a technology on‬
‭John Deere’s new sprayers that utilizes machine learning to differentiate between‬
‭crops and weeds. Each sprayer nozzle comes with a camera and sprays the weeds with‬
‭weed killer while leaving the crops alone. These advancements in farming technology‬
‭are helping to feed the world, and improving the performance of this new technology‬
‭advances the previous progress that John Deere has made.‬

‭4‬

‭Revised Design‬

‭Requirements‬

‭●‬ ‭Provide a standard image set for testing the algorithm via software to quantify‬
‭the loss.‬

‭●‬ ‭Create lightweight compression and decompression cores that are mappable to‬
‭FPGA or ASIC to minimize on-chip RAM usage.‬

‭●‬ ‭Compression and decompression are to be performed on a live input stream.‬
‭●‬ ‭The latency should be low enough to allow for near-zero latency computer‬

‭vision processing.‬
‭●‬ ‭Prioritize logic simplicity and pipelineability over compression ratio.‬
‭●‬ ‭Solution should be fully pipelineable, a key requirement to this is having each‬

‭encoded pixel of a predetermined size.‬
‭●‬ ‭Demonstration should show HDMI output from the FPGA to a 1920x1080‬

‭resolution monitor.‬

‭Engineering Standards‬

‭●‬ ‭Python, Java, and C++ for basic prototyping of the compression algorithms‬
‭●‬ ‭VHDL for the FPGA IPs‬
‭●‬ ‭Vitis HLS‬
‭●‬ ‭LZW video compression‬
‭●‬ ‭BWT data transformation‬
‭●‬ ‭AXI-Stream Video Formatting‬
‭●‬ ‭HDMI for transmitting the video from input and to output‬
‭●‬ ‭Data-size standardized formats (the Byte)‬
‭●‬ ‭Python for basic prototyping of the compression algorithms‬
‭●‬ ‭Java and C++ as well.‬
‭●‬ ‭VHDL for the FPGA IPs‬
‭●‬ ‭Vitis HLS‬
‭●‬ ‭LZW video compression‬
‭●‬ ‭BWT data transformation‬
‭●‬ ‭AXI-Stream Video Formatting‬
‭●‬ ‭HDMI for transmitting the video from input and to output‬
‭●‬ ‭Data-size standardized formats (the Byte)‬

‭5‬

‭Security Concerns and Countermeasures‬

‭The only security concern for our project would be any third-party IPs we used hiding‬
‭secret code that steals data streamed through it. This concern is counter-measured by‬
‭using only IPs from reputable sources (Such as AMD).‬

‭Design Evolution‬

‭Our initial design had LZW compression and decompression, but our testing showed‬
‭that this algorithm would not be sufficient for compression with images, let alone‬
‭video. We decided to move to using pre-made compression and decompression IPs‬
‭from the XILINX marketplace, and modifying those to fit with our near-zero latency‬
‭HDMI passthrough system. This approach failed because of the extreme cost of these‬
‭IPs. We also tried to import the Vitis HLS Data Compression Library into our project.‬
‭While we could generate IPs using the HLS tool, we encountered problems with FPGA‬
‭space and input/output compatibility. Finally, we decided to create our own IPs with‬
‭simple compression and decompression schemes and successfully implemented this‬
‭strategy. We also made a design decision to do the compression and decompression‬
‭after the video stream had already made it through the VDMA. We made this decision‬
‭because our new compression had a fixed size of 16 bits on the output. The original‬
‭potential use of the VDMA was to use software to read the VDMA and provide metrics;‬
‭however, since we have a fixed compression ratio, we no longer have to collect that‬
‭data.‬

‭Implementation Details‬

‭Detailed Design‬

‭To describe our final implementation, we divided the discussion into three parts, each‬
‭with its own visual aid. The sections are built top-down, starting from our top-level‬
‭demonstration setup, then a flowchart outlining the functionality of our board, and‬
‭lastly, we highlighted the details of our compression scheme below.‬

‭6‬

‭Figure 1‬

‭Figure 1 is a diagram that shows the top-level layout of our demonstration. Our‬
‭project emphasized a need for very low-latency compression. To highlight our‬
‭system's near-zero latency, we chose to demonstrate the HDMI video before and after‬
‭the compression/decompression pipeline. This approach allows us to inspect any‬
‭visual latency and analyze the effects of our loss side-by-side with the raw video‬
‭version. Monitor 1 displays the video from the video source PC, and Monitor 2 displays‬
‭the video from the output of our hardware pipeline. The demonstration runs using our‬
‭Vivado-generated hardware platform file (.xsa) and our C source code from Vitis to‬
‭flash the board with the hardware/software we designed while the PC drives the HDMI‬
‭source.‬

‭7‬

‭Figure 2‬

‭Figure 2 lays out the hardware design and demonstrates the different components we‬
‭used to build the pipeline. We chose the Zybo Z7-10 because it supports interfacing‬
‭with HDMI Input and Output. The Zybo Z7-10 is also home to a Zynq-7000 ARM/FPGA‬
‭SoC that allows us to interface with and map our solution to an FPGA. The plan for our‬
‭design was to establish an HDMI passthrough and then add in our custom cores as‬
‭needed. The pipeline starts by taking HDMI input and converting it to RGB using an IP‬
‭provided by Vivado. We then take the raw RGB data and convert it into an AXI-Stream‬
‭using other IP provided by Vivado. The Zynq7 processing system was initially used in‬
‭our project to collect performance metrics. However, the final implementation only‬
‭uses the processing system for configuring the VDMA and Video Timing Controllers‬
‭(not included in the schematic above). Our design runs the compression and‬
‭decompression after reading the frame buffer from the VDMA. Details regarding the‬
‭compression scheme are outlined below in Figure 3. After the compression and‬
‭decompression, the AXI-Stream must be converted back into HDMI output. To do this,‬
‭we used the AXI-Stream to Video Out IP and the RGB to DVI IP to go from AXI-Stream‬
‭to HDMI data for output from the Zybo Z7-10.‬

‭8‬

‭Figure 3‬

‭Figure 3 shows the compression scheme used in our final implementation. The‬
‭algorithms are simple yet effective, especially when considering the emphasis in the‬
‭requirements placed on our solution to be lightweight and logically simple. This‬
‭compression scheme drops the least significant three bits for the Red and Blue‬
‭channels and the bottom two least significant bits from the Green channel. This‬
‭approach allows the amount of RAM needed to store the data to be only ⅔ of the‬
‭original RAM needed while only needing one clock cycle to compute this. We chose an‬
‭RGB scheme of 5:6:5 instead of 6:5:5 or 5:5:6 because human eyes are more sensitive‬
‭to variations in green light than in red or blue. The encoded data is then directly fed‬
‭into the decompression IP so it can be converted back to 24 bits. To recover the lost‬
‭bits, we simply add “100” for three bits and “10” for two bits. We wrote a software‬
‭program that found that “000” may be the most common. However, we still chose‬
‭“100” as it is the median value between 1’b000 and 1’b111, and the distribution is near‬

‭9‬

‭normal. This compression scheme allows us only to use 2/3 of the original RAM‬
‭requirement while achieving an error rate close to 0%. Although we are losing ⅓ of‬
‭the original bits, the furthest off the red and blue component can be from the original‬
‭is 4, and the furthest off the green can be is 2. This scheme yields a picture that saves a‬
‭lot of data while maintaining the original image effectively by leveraging the most‬
‭significant bits.‬

‭Testing‬

‭Process‬

‭Our software testing for LZW compression consisted of a Java implementation‬
‭of LZW coded by Benjamin. The LZW compression was also interfaced with a BWT in‬
‭python in order to facilitate more compression-efficient results.‬

‭For hardware, testing was slightly challenging. One of our primary tests was to‬
‭visually inspect to see if our implementation is working, which admittedly is not the‬
‭most robust. While debugging our design we also used Internal Logic Analyzers‬
‭provided by Vivado that act like miniature oscilloscopes within the FPGA. We‬
‭confirmed that our compression/decompression was acting as expected when looking‬
‭at the waveforms from the ILAs. The main issue we ran into while testing was having‬
‭HDMI not output. There was very rarely an error that did not break HDMI output.‬

‭Since the hardware was challenging to test formally, we used software to get‬
‭some of our metrics. The compression standards implemented in hardware were also‬
‭implemented in software to allow us to see our data loss. We used raw images as the‬
‭input of a software program that compared the compressed and decompressed data to‬
‭the original data and found the percentage error difference.‬

‭10‬

‭Results‬

‭Our software testing showed that LZW was insufficient to use for compression‬
‭because we saw an increase in our raw image size of 50% in the compressed form,‬
‭even with a BWT formatting used beforehand. One such test showed a Raw file image‬
‭(.RAF) going from 55 to 85 MB of data. We found that the images did not have enough‬
‭patterns in the data to be useful for compression by LZW. Because LZW is one of the‬
‭only compression algorithms that would be simple enough for our small team to‬
‭implement in compression, this prodded us to come up with a plan to either focus on‬
‭premade compression algorithms such as those already designed by AMD for the‬
‭Zynq-7000 or a simple lossy algorithm for compression and decompression.‬

‭11‬

‭Figure 4‬

‭Our hardware testing showed the quality and latency of the video coming out of the‬
‭FPGA. Figure 5 shows the regular video streaming on the left monitor while the‬
‭pipelined and decompressed video stream is on the right. This setup allowed us to see‬
‭how the fine details of an image looked the same after the‬
‭compression/decompression, but when there was a solid color (such as the sky), some‬
‭distortion was introduced.‬

‭Figure 5‬

‭Figure 6, shown above, pictures the right monitor outputting raw data from the PC‬
‭and the left monitor outputting the data after the compression/decompression‬
‭pipeline. We are displaying a stopwatch from the laptop in order to identify any‬
‭latency. We do not have a specific latency we were trying to meet; however, in this‬
‭image, one can see that the HDMI data is going through the pipeline faster than it is‬
‭getting to the display of the laptop driving the display. This demonstration meets the‬
‭near-zero latency requirement as it supports the entire stream with zero visual lag.‬

‭12‬

‭Figure 6‬

‭Finally, shown below are three formulas that tell us a lot about our design’s‬
‭performance. The first calculation is the compression ratio, a metric that profiles how‬
‭much data is being saved. We focused more on a fast throughput but still had a ratio of‬
‭1.5:1, meaning we only store ⅔ of the original data. The following formula is‬
‭throughput. Our system uses a 134 MHz pixel clock and operates on 3 bytes per cycle.‬
‭These settings allow our compression and decompression IPs to support up to 402‬
‭MB/s, which is more than enough for our use cases. The last formula is how we‬
‭enumerate the loss of our data. It compares pre-pipeline and post-pipeline data and‬
‭figures out the percentage of error. For images, we take the average error per pixel as‬
‭our metric. Figure 8 below shows that our values were within 1 percent of the original‬
‭value. This fact means our image is at least 99% “correct.” This metric does not‬
‭account for everything when considering lost data. However, it helped us find that‬
‭RGB 5:6:5 was our best format and that by dropping less significant bits, our‬
‭“correctness” is higher than the amount of data we are losing.‬

‭●‬ ‭𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛‬‭𝑅𝑎𝑡𝑖𝑜‬ = ‭ ‬ ‭𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙‬‭ ‬‭𝐷𝑎𝑡𝑎‬‭ ‬‭𝑆𝑖𝑧𝑒‬
‭𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑‬‭ ‬‭𝐷𝑎𝑡𝑎‬‭ ‬‭𝑆𝑖𝑧𝑒‬ = ‭1‬. ‭5‬‭ ‬

‭●‬ ‭𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡‬ = ‭ ‬‭ ‬‭𝑃𝑖𝑥𝑒‬‭𝑙‬
‭𝐹𝑟𝑒𝑞‬

‭ ‬ × ‭ ‬ ‭#‬‭ ‬‭𝑃𝑖𝑥𝑒𝑙𝑠‬
‭𝑐𝑦𝑐𝑙𝑒‬ × ‭#‬‭ ‬‭𝐵𝑦𝑡𝑒𝑠‬

‭𝑃𝑖𝑥𝑒𝑙‬ = ‭ ‬‭134‬‭ ‬‭𝑀𝐻𝑧‬‭ ‬ × ‭ ‬‭1‬‭ ‬ × ‭ ‬‭3‬ = ‭402‬‭ ‬ ‭𝑀𝐵‬
‭𝑠‬

‭13‬

‭●‬ ‭𝑃𝑖𝑥𝑒‬‭𝑙‬
‭𝐸𝑟𝑟𝑜𝑟‬‭%‬

= (‭𝑃𝑖𝑝𝑒𝑙𝑖𝑛‬‭𝑒‬
‭𝑃𝑖𝑥𝑒𝑙‬

− ‭𝑂𝑟𝑖𝑔𝑖𝑛𝑎‬‭𝑙‬
‭𝑃𝑖𝑥𝑒𝑙‬

)‭ ‬ × ‭1‬
‭256‬ × ‭100‬

‭Figure 7‬

‭Figure 7 displays the values outputted after running three raw test images through our‬
‭Python script, which implements the‬ ‭equation shown above. As we can see,‬‭𝑃𝑖𝑥𝑒‬‭𝑙‬

‭𝐸𝑟𝑟𝑜𝑟‬‭%‬

‭the average error percentage per pixel for the 3 test images is below 1%. Considering‬
‭that we are compressing the size by 1/3rd of the original image size, having the‬
‭average pixel error percentage below 1% is a major success.‬

‭Broader Context‬
‭Public Health, Safety, and Welfare:‬‭This project affects the safety of a John Deere‬
‭customer because the video compression/decompression pipeline can be used for‬
‭enhanced machine vision capabilities, making the product safer. For example,‬
‭compressing video data allows more cameras to be running at once, which can provide‬
‭more data for an autonomous system.‬

‭Global, Cultural, and Social:‬‭As mentioned above, this project gives equipment the‬
‭ability to have more cameras, which can improve autonomous capabilities. Autonomy‬
‭will be essential to aid in the farm labor shortage, keeping the agricultural industry‬
‭efficient and making food accessible to even more people.‬

‭Economic:‬‭This project decreases the memory needed, thus decreasing the hardware‬
‭cost of equipment, allowing manufacturers to decrease production costs and the final‬
‭sale price for farmers.‬

‭14‬

‭Environmental:‬‭With the decreased equipment cost, as mentioned previously,‬
‭farmers can invest in equipment for environmentally friendly practices such as‬
‭strip-tillers, which reduce soil erosion and increase organic matter in the soil.‬

‭15‬

‭Conclusions‬

‭Progress Review‬

‭This semester, we began creating the hardware side of the compression by developing‬
‭an HDMI passthrough on the Xilinx Zynq-7000 Dev Board platform. At the same time,‬
‭the software team began work on getting real-world numbers for the LZW‬
‭compression algorithm. The software team's testing of LZW showed poor results and‬
‭pivoted the team's approach. After the two teams finished their work, the hardware‬
‭team and software team worked on attempting to use various IP's such as those from‬
‭AMD, and other 3rd party IP's as well. Those compression IPs given by AMD were‬
‭found to be incompatible with the AXI-stream. Our team managed to get a 3rd party‬
‭compression algorithm working. However, there was no easy way to decompress from‬
‭that algorithm. We determined that the compression algorithm would be useless for a‬
‭demo. Our team then worked on creating a simple compression and decompression‬
‭algorithm that we used in our final demo. After getting a working version of that‬
‭algorithm, we tested various different parameters, like having more compression for‬
‭blue values and less compression for red and green values. Given the roadblocks we‬
‭have encountered that caused the course of our project to change, our implementation‬
‭is excellent. We still managed to produce an implementation that met as many‬
‭requirements and constraints as possible in the amount of time we had.‬

‭Discussion of Value‬

‭First and foremost, we helped our client by proving the idea of near-zero latency‬
‭compression and decompression of video is possible using a lightweight FPGA. We‬
‭also delivered a working implementation for our client to work with. We provided‬
‭insight into creating compression and decompression IPs and the feasibility of‬
‭purchasing a premade IP. We also delivered a software program to optimize the‬
‭compression loss rate depending on the type of images to be compressed (e.g., dry‬
‭farm fields with lots of reds vs. growing farm fields with lots of greens). Finally, we‬
‭created an excellent foundation for a future team of engineers to implement a more‬
‭robust compression and decompression algorithm in hardware.‬

‭16‬

‭Future Steps‬

‭Our implementation of our FPGA is a perfect starting point for a larger (or another‬
‭senior design team) team to write and test more complex pipelined compression and‬
‭decompression algorithms than our team of 5 could realistically develop. Larger, more‬
‭robust compression and decompression algorithms allow for higher compression‬
‭ratios and a lower loss rate while being relatively similar in latency. Given our project‬
‭as a starting point, another team would not have to spend any time choosing‬
‭hardware and building up the HDMI passthrough and would benefit from the‬
‭knowledge we gained regarding purchasable and open-source FPGA solutions.‬

‭Appendices‬

‭Appendix 1 - Operation Manual‬
‭1)‬ ‭Required Materials‬

‭●‬ ‭Zybo Z7-10‬
‭●‬ ‭4 HDMI Cables‬
‭●‬ ‭1:2 HDMI Splitter‬
‭●‬ ‭MicroUSB to USB Cable‬
‭●‬ ‭PC‬
‭●‬ ‭2x Power Adapters (Zybo & HDMI Splitter)‬
‭●‬ ‭2x HDMI Monitors‬
‭●‬ ‭Vivado 2020.1‬
‭●‬ ‭Vitis 2020.1‬

‭2) Physical Setup‬
‭I.‬ ‭Plug in the Zybo board’s power‬

‭adapter in port 1 and then connect it to‬
‭a nearby outlet.‬

‭II.‬ ‭Plug in the micro-USB side of‬
‭the micro-USB to USB Cable‬
‭into port 4, then plug in the‬
‭USB side into your computer.‬

‭III.‬ ‭Plug in the power adapter of the HDMI‬
‭splitter and then have it connected to a‬
‭nearby outlet.‬

‭IV.‬ ‭Connect one of the HDMI cables from‬
‭your computer to the input port on the‬
‭HDMI splitter.‬

‭17‬

‭V.‬ ‭Connect the second HDMI cable from the output port on the HDMI splitter to‬
‭port 3 (HDMI RX) on the Zybo board.‬

‭VI.‬ ‭Connect the third HDMI cable from the other output port on the HDMI splitter‬
‭to the first monitor’s HDMI port.‬

‭VII.‬ ‭Connect the fourth HDMI cable from port 2 (HDMI TX) on the Zybo board to the‬
‭second monitor’s HDMI port.‬

‭VIII.‬ ‭Finally, make sure that the switch above port 4 on the Zybo board is flipped to‬
‭“ON”. You may now proceed to step 3.‬

‭3) Start by downloading vitis_492_final.ide.zip from‬
‭https://git.ece.iastate.edu/sd/sdmay24-12‬

‭4) Open Vitis 2020.1 on your machine (The icon should look like this) :‬

‭5) Select a workspace to hold all of the associated directories and files from this‬
‭project and press launch, if you choose one that has not been created Vitis will create it‬
‭for you‬

https://git.ece.iastate.edu/sd/sdmay24-12

‭18‬

‭6) Once Vitis is open select “Import Project” from the bottom left side of the User‬
‭Interface, choose “Vitis project exported .zip file” and select vitis_492_final.ide.zip‬
‭(downloaded in step 3)‬

‭7) Ensure that all projects are selected and press finish‬

‭8) To build select Zybo-Z7-10_HDMI_system [System] and hit the build button‬

‭9) Now, to launch this vitis application on hardware, ensure the Zybo Z7-10 is fully‬
‭set up to the PC, the HDMI interfaces, powered on, and the power adapter is plugged‬
‭in. Then, select the Application project from Vitis with a right click, navigate to Run‬
‭As, then select “Launch on Hardware (Single Application Debug)”‬

‭19‬

‭10) The monitor hooked up to the HDMI TX port of the Zybo Z7-10 should now be‬
‭displaying the video after it has been compressed and decompressed.‬

‭11) A majority of the work we did for this project was on the hardware side. The Vitis‬
‭release already contains the hardware platform we developed, but if anyone would like‬
‭to edit or inspect our hardware project, it can also be found at‬
‭https://git.ece.iastate.edu/sd/sdmay24-12‬‭. To launch the project,‬‭select the .xpr file‬
‭after unzipping the archived project. The steps for updating the hardware platform‬
‭file from Vivado to a Vitis project can be found here if interested:‬
‭Vitis-In-Depth-Tutorial/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU10‬
‭4/step1.md at 2020.1 · Xilinx/Vitis-In-Depth-Tutorial · GitHub‬

https://git.ece.iastate.edu/sd/sdmay24-12
https://github.com/Xilinx/Vitis-In-Depth-Tutorial/blob/2020.1/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/step1.md
https://github.com/Xilinx/Vitis-In-Depth-Tutorial/blob/2020.1/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/step1.md

‭20‬

‭Appendix 2 - Design Iterations‬

‭To dive deeper into the iterations mentioned earlier, we started the first‬
‭semester researching potential compression algorithms that would match project‬
‭requirements while matching feasibility concerning the amount of time we have. The‬
‭result was to implement an LZW encoder and decoder in C/Java and see which would‬
‭be the most efficient to use as an IP in the schematic. Early second semester, we‬
‭started to develop the first few iterations of the encoder in parallel with the‬
‭production of the HDMI passthrough. The code worked flawlessly with testing, but‬
‭once we introduced images into the input, the compression size increased the file size‬
‭rather than reduced. To try and make the data more repetitive, which is where LZW‬
‭thrives, we tried adding a BWT implementation into the algorithm to rearrange the‬
‭data into alphanumeric sorted sequences. This addition did not help. Since the data‬
‭worked well with testing, we found that pulling in bytes of data would always be‬
‭treated as a signed byte leading to negative ASCII values (they do not exist but were‬
‭being created), messing up the encodings. This issue was a challenge we could not‬
‭overcome on top of the runtime of the bitstream taking longer than required.‬

‭Due to time constraints, we stopped trying to develop an IP with a specific‬
‭algorithm. We decided to look for a premade custom IP to add to the project but could‬
‭not find one that worked on our FPGA and fit within our allotted budget (all were over‬
‭$20,000 and did not allow a free evaluation period). Next, we set out to implement an‬
‭open-source Vitis HLS compression scheme by packaging it into an IP Core but faced‬
‭challenges of FPGA space and input/output compatibility. We also tried implementing‬
‭CCSDS123 compression into our system. We got the Internal Logic Analyzer from‬
‭Vivado to show that the CCSDS123 IP was outputting an AXI-Stream. However, there‬
‭was little to no documentation on how to decompress CCSDS123. Shifting plans again,‬
‭we decided to create our own IP with simple compression and decompression. We‬
‭implemented a compression algorithm with a quantization scheme that would‬
‭convert RGB 8:8:8 to RGB: 5:6:5. Then we decompressed those values by adding bits‬
‭back. We then used our one software program to optimize and quantify the values of‬
‭the bits we add back. We decided to add back the middle value of the 2 or 3 missing‬
‭bits. This approach means that if 3 bits were removed when compressing, then to‬
‭decompress, we will append the bits “100” to the end of the 5 bits to bring it back to 8‬
‭bits. In binary, “100” is the middle value of “111” and “000”, which provides a more‬
‭neutral approximation.‬

‭21‬

‭Appendix 3 - Other Considerations‬

‭As mentioned in Appendix 2, we considered many other strategies to implement‬
‭compression and decompression other than the strategy we used. These strategies‬
‭included creating our own IP by writing a VHDL program of a compression algorithm‬
‭such as LZW, using a pre-made IP from the XILINX marketplace, and implementing‬
‭an open-source compression scheme into a packaged IP.‬

‭Appendix 4 - Code‬

‭Vivado Block Design‬

‭22‬

‭Python Code for Testing Average Error Per Pixel:‬

‭import‬‭rawpy‬

‭if‬‭__name__ ==‬‭"__main__"‬‭:‬
‭check0 = check1 = check2 = check3 = check4 = check5 = check6 = check7 =‬

‭totalVarR = totalVarG = totalVarB =‬‭0‬
‭# Open the file‬‭for‬‭image‬‭to test‬
‭with rawpy.imread(‬‭'C:/cygwin64/home/benme/491_Project/Java/Image3.NEF'‬‭)‬

‭as raw:‬
‭# Process‬‭image‬‭into an object‬
‭rgb = raw.postprocess()‬
‭height‬‭,‬‭width‬‭, _ = rgb.‬‭shape‬
‭# Prints‬‭width‬‭,‬‭height‬‭, and‬‭color‬‭channels‬
‭print‬‭(rgb.‬‭shape‬‭)‬
‭print‬‭(‬‭"Total Pixel‬‭Count: "‬‭+‬‭str‬‭(‬‭height‬‭*‬‭width‬‭))‬

‭for‬‭pxlw in range(‬‭width‬‭):‬
‭for‬‭pxlh in range(‬‭height‬‭):‬

‭# Extract rgb values from pixel‬‭map‬‭twice‬
‭r, g, b = rgb[pxlh, pxlw]‬
‭rt, gt, bt = rgb[pxlh, pxlw]‬
‭# Alter the numbers like compression algorithm‬
‭rt = ((rt >>‬‭3‬‭) <<‬‭3‬‭) +‬‭4‬
‭gt = ((gt >>‬‭2‬‭) <<‬‭2‬‭) +‬‭2‬
‭bt = ((bt >>‬‭3‬‭) <<‬‭3‬‭) +‬‭4‬
‭# Add to variance to total‬
‭totalVarR += (‬‭abs‬‭(r - rt)) /‬‭256‬
‭totalVarG += (‬‭abs‬‭(g - gt)) /‬‭256‬
‭totalVarB += (‬‭abs‬‭(b - bt)) /‬‭256‬

‭# Divide variance of each variable by px count‬‭for‬‭average‬
‭totalVarR = totalVarR / (‬‭width‬‭*‬‭height‬‭)‬
‭totalVarG = totalVarG / (‬‭width‬‭*‬‭height‬‭)‬
‭totalVarB = totalVarB / (‬‭width‬‭*‬‭height‬‭)‬
‭print‬‭(‬‭"Total Variance Red: "‬‭+‬‭str‬‭(totalVarR *‬‭100‬‭))‬
‭print‬‭(‬‭"Total Variance Green: "‬‭+‬‭str‬‭(totalVarG *‬‭100‬‭))‬
‭print‬‭(‬‭"Total Variance Blue: "‬‭+‬‭str‬‭(totalVarB *‬‭100‬‭))‬
‭print‬‭(‬‭"Total Variance per Pixel: "‬‭+‬‭str‬‭(((totalVarR‬‭+ totalVarG +‬

‭totalVarB) /‬‭3‬‭) *‬‭100‬‭))‬

‭23‬

‭Java Code for the LZW Compression Algorithm from the Initial Design:‬

‭private‬‭static‬‭void‬‭LZW_Encoding‬‭() {‬
‭int‬‭keyCount‬‭=‬‭0‬‭;‬
‭HashMap‬‭<‬‭String‬‭,‬‭Integer‬‭>‬‭enc‬‭=‬‭new‬‭HashMap‬‭<>(‬‭MAX_ENTRIES‬‭);‬
‭// Populate the encryption HashMap with the 256 ASCII symbols‬
‭for‬‭(;‬‭keyCount‬‭<‬‭ASCII_ENTRIES‬‭;‬‭keyCount‬‭++)‬‭enc‬‭.‬‭put‬‭(‬‭""‬‭+ (‬‭char‬‭)‬‭keyCount‬‭,‬

‭keyCount‬‭);‬
‭// Open a file and initialize bitsream variables‬
‭try‬‭(‬‭BufferedInputStream‬‭bufferedInputStream‬‭=‬‭new‬

‭BufferedInputStream‬‭(‬‭new‬‭FileInputStream‬‭(‬‭"./Java/Metal.dng"‬‭)))‬‭{‬
‭FileWriter‬‭fw‬‭=‬‭new‬‭FileWriter‬‭(‬‭"./Java/compressed.txt"‬‭);‬
‭BufferedWriter‬‭bw‬‭=‬‭new‬‭BufferedWriter‬‭(‬‭fw‬‭);‬
‭int‬‭bytesRead‬‭;‬
‭byte‬‭[]‬‭byteBuff‬‭=‬‭new‬‭byte‬‭[‬‭4096‬‭];‬
‭Charset‬‭charset‬‭=‬‭Charset‬‭.‬‭forName‬‭(‬‭"UTF-8"‬‭);‬
‭CharsetDecoder‬‭decoder‬‭=‬‭charset‬‭.‬‭newDecoder‬‭();‬
‭// While bitstream is reading‬
‭while‬‭((‬‭bytesRead‬‭=‬‭bufferedInputStream‬‭.‬‭read‬‭(‬‭byteBuff‬‭))‬‭!= -‬‭1‬‭) {‬

‭String‬‭asc‬‭=‬‭""‬‭;‬
‭// Initialize asc‬
‭for‬‭(‬‭int‬‭i‬‭=‬‭0‬‭;‬‭i‬‭<‬‭byteBuff‬‭.‬‭length‬‭;‬‭i‬‭++) {‬

‭if‬‭(‬‭byteBuff‬‭[‬‭i‬‭] >=‬‭0‬‭)‬‭asc‬‭+= (‬‭char‬‭)(‬‭byteBuff‬‭[‬‭i‬‭]);‬
‭else‬‭asc‬‭+= (‬‭char‬‭)(‬‭256‬‭+ (‬‭int‬‭)(‬‭byteBuff‬‭[‬‭i‬‭]));‬

‭}‬

‭int‬‭iter‬‭=‬‭1‬‭;‬
‭String‬‭P‬‭=‬‭""‬‭+‬‭asc‬‭.‬‭charAt‬‭(‬‭0‬‭);‬
‭String‬‭encryption‬‭=‬‭""‬‭;‬

‭while‬‭(‬‭iter‬‭<‬‭asc‬‭.‬‭length‬‭()) {‬
‭char‬‭C‬‭=‬‭asc‬‭.‬‭charAt‬‭(‬‭iter‬‭);‬
‭// If next char is in the map‬‭add to pattern‬
‭if‬‭(‬‭enc‬‭.‬‭containsKey‬‭(‬‭P‬‭+‬‭C‬‭)) {‬

‭P‬‭+=‬‭C‬‭;‬

‭24‬

‭}‬‭else‬‭{‬
‭int‬‭[]‬‭code‬‭=‬‭new‬‭int‬‭[‬‭2‬‭];‬
‭code‬‭[‬‭0‬‭] = ((‬‭enc‬‭.‬‭get‬‭(‬‭P‬‭)) >>‬‭8‬‭) &‬‭0xFF‬‭;‬
‭code‬‭[‬‭1‬‭] = (‬‭enc‬‭.‬‭get‬‭(‬‭P‬‭))‬ ‭&‬‭0xFF‬‭;‬
‭// New char was not in known patterns so check if entries‬

‭are full‬
‭if‬‭(‬‭enc‬‭.‬‭get‬‭(‬‭P‬‭) <‬‭ASCII_ENTRIES‬‭)‬‭{‬‭encryption‬‭+=‬‭"0"‬‭+‬

‭(‬‭char‬‭)‬‭code‬‭[‬‭1‬‭]; }‬
‭// HashMap is full so use the current possible code P‬
‭else‬‭{‬‭encryption‬‭+= (‬‭char‬‭)‬‭code‬‭[‬‭0‬‭]‬‭+ (‬‭char‬‭)‬‭code‬‭[‬‭1‬‭]; }‬
‭// Add new key and iterate‬‭keyCount‬
‭if‬‭(‬‭keyCount‬‭<‬‭MAX_ENTRIES‬‭)‬‭{‬

‭enc‬‭.‬‭put‬‭(‬‭P‬‭+‬‭C‬‭,‬‭keyCount‬‭);‬
‭keyCount‬‭++;‬

‭}‬
‭// Reset the pattern for next‬‭iteration‬
‭P‬‭=‬‭""‬‭+‬‭C‬‭;‬

‭}‬
‭// Handling the last case of a‬‭stream‬
‭if‬‭(‬‭iter‬‭==‬‭asc‬‭.‬‭length‬‭() -‬‭1‬‭)‬‭{‬

‭int‬‭[]‬‭code‬‭=‬‭new‬‭int‬‭[‬‭2‬‭];‬
‭code‬‭[‬‭0‬‭] = ((‬‭enc‬‭.‬‭get‬‭(‬‭P‬‭)) >>‬‭8‬‭) &‬‭0xFF‬‭;‬
‭code‬‭[‬‭1‬‭] = (‬‭enc‬‭.‬‭get‬‭(‬‭P‬‭))‬ ‭&‬‭0xFF‬‭;‬
‭if‬‭(‬‭enc‬‭.‬‭get‬‭(‬‭P‬‭) <‬‭ASCII_ENTRIES‬‭)‬‭{‬‭encryption‬‭+=‬‭"0"‬‭+‬

‭(‬‭char‬‭)‬‭code‬‭[‬‭1‬‭]; }‬
‭else‬‭{‬‭encryption‬‭+= (‬‭char‬‭)‬‭code‬‭[‬‭0‬‭]‬‭+ (‬‭char‬‭)‬‭code‬‭[‬‭1‬‭]; }‬

‭}‬
‭iter‬‭++;‬

‭}‬
‭bw‬‭.‬‭write‬‭(‬‭encryption‬‭);‬

‭}‬
‭bw‬‭.‬‭close‬‭();‬

‭}‬‭catch‬‭(‬‭IOException‬‭e‬‭) {‬
‭e‬‭.‬‭printStackTrace‬‭();‬

‭}‬
‭}‬

‭private‬‭static‬‭void‬‭LZW_Decoding‬‭() {‬
‭// Initialize variables for the HashMap‬

‭25‬

‭int‬‭keyCount‬‭=‬‭0‬‭;‬
‭HashMap‬‭<‬‭Integer‬‭,‬‭String‬‭>‬‭enc‬‭=‬‭new‬‭HashMap‬‭<>(‬‭MAX_ENTRIES‬‭);‬
‭for‬‭(;‬‭keyCount‬‭<‬‭ASCII_ENTRIES‬‭;‬‭keyCount‬‭++)‬‭enc‬‭.‬‭put‬‭(‬‭keyCount‬‭,‬‭""‬‭+‬

‭(‬‭char‬‭)‬‭keyCount‬‭);‬
‭// Open the compressed file and initialize stream‬
‭try‬‭(‬‭BufferedInputStream‬‭bufferedInputStream‬‭=‬‭new‬

‭BufferedInputStream‬‭(‬‭new‬‭FileInputStream‬‭(‬‭"./Java/compressed.txt"‬‭)))‬‭{‬
‭FileWriter‬‭fw‬‭=‬‭new‬‭FileWriter‬‭(‬‭"./newout.txt"‬‭);‬
‭BufferedWriter‬‭bw‬‭=‬‭new‬‭BufferedWriter‬‭(‬‭fw‬‭);‬

‭int‬‭bytesRead‬‭;‬
‭byte‬‭[]‬‭buffer‬‭=‬‭new‬‭byte‬‭[‬‭4096‬‭];‬

‭while‬‭((‬‭bytesRead‬‭=‬‭bufferedInputStream‬‭.‬‭read‬‭(‬‭buffer‬‭))‬‭!= -‬‭1‬‭) {‬
‭String‬‭asc‬‭=‬‭""‬‭;‬
‭// Initiailize variables for handling‬‭incoming bytes‬
‭for‬‭(‬‭int‬‭i‬‭=‬‭0‬‭;‬‭i‬‭<‬‭buffer‬‭.‬‭length‬‭;‬‭i‬‭++)‬‭asc‬‭+= (‬‭char‬‭)(‬‭buffer‬‭[‬‭i‬‭] &‬

‭0xFF‬‭);‬
‭int‬‭[]‬‭code‬‭= {‬‭asc‬‭.‬‭charAt‬‭(‬‭0‬‭),‬‭asc‬‭.‬‭charAt‬‭(‬‭1‬‭)‬‭};‬
‭int‬‭iter‬‭=‬‭2‬‭;‬
‭int‬‭OLD‬‭= ((‬‭code‬‭[‬‭0‬‭] <<‬‭8‬‭) &‬‭0xFF‬‭)‬‭+ (‬‭code‬‭[‬‭1‬‭] &‬‭0xFF‬‭);‬
‭int‬‭NEW‬‭;‬

‭String‬‭encryption‬‭=‬‭""‬‭+‬‭enc‬‭.‬‭get‬‭(‬‭OLD‬‭);‬
‭String‬‭S‬‭=‬‭""‬‭;‬
‭char‬‭C‬‭=‬‭' '‬‭;‬

‭while‬‭(‬‭iter‬‭<‬‭asc‬‭.‬‭length‬‭()) {‬
‭// Start looking to find the decoding‬‭sequence‬
‭code‬‭[‬‭0‬‭] =‬‭asc‬‭.‬‭charAt‬‭(‬‭iter‬‭);‬
‭code‬‭[‬‭1‬‭] =‬‭asc‬‭.‬‭charAt‬‭(‬‭iter‬‭+‬‭1‬‭);‬
‭NEW‬‭= ((‬‭code‬‭[‬‭0‬‭] <<‬‭8‬‭) &‬‭0xFF‬‭)‬‭+ (‬‭code‬‭[‬‭1‬‭] &‬‭0xFF‬‭);‬
‭// Add key if new sequence‬
‭if‬‭(!‬‭enc‬‭.‬‭containsKey‬‭(‬‭NEW‬‭)) {‬

‭S‬‭=‬‭enc‬‭.‬‭get‬‭(‬‭OLD‬‭) +‬‭C‬‭;‬
‭}‬‭else‬‭{‬

‭// Else grab sequence‬
‭S‬‭=‬‭enc‬‭.‬‭get‬‭(‬‭NEW‬‭);‬

‭}‬

‭26‬

‭encryption‬‭+=‬‭S‬‭;‬
‭C‬‭=‬‭S‬‭.‬‭charAt‬‭(‬‭0‬‭);‬
‭enc‬‭.‬‭put‬‭(‬‭keyCount‬‭,‬‭enc‬‭.‬‭get‬‭(‬‭OLD‬‭)‬‭+‬‭C‬‭);‬
‭keyCount‬‭++;‬
‭OLD‬‭=‬‭NEW‬‭;‬
‭iter‬‭+=‬‭2‬‭;‬

‭}‬
‭bw‬‭.‬‭write‬‭(‬‭encryption‬‭);‬

‭}‬
‭bw‬‭.‬‭close‬‭();‬

‭}‬‭catch‬‭(‬‭IOException‬‭e‬‭) {‬
‭e‬‭.‬‭printStackTrace‬‭();‬

‭}‬
‭}‬

