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 Introduction/Background 

 Problem Statement 

 This project’s goal is to increase the amount of computer vision workload that can be 
 handled by an FPGA while reducing the on-chip RAM usage by using pipelineable 
 compression and decompression cores. 

 Intended Users/Uses 

 This project is intended to be used by John Deere for video processing and computer 
 vision applications. Computer vision applications often require a large amount of 
 convolutions to be performed as fast as possible. An FPGA can perform these 
 operations at near-zero latency. However, it is currently limited by the amount of 
 RAM available to store line bu�ers. The intended use of our project is to place a 
 compression core at the input of each convolutional line bu�er and a decompression 
 core at the output of each convolutional line bu�er. 

 Related Context 

 As agricultural and construction machinery increases its use of cameras and video, 
 there is a tremendous need to process and store that data e�ciently. John Deere uses 
 computer vision for many new technologies, such as “See & Spray,” a technology on 
 John Deere’s new sprayers that utilizes machine learning to di�erentiate between 
 crops and weeds. Each sprayer nozzle comes with a camera and sprays the weeds with 
 weed killer while leaving the crops alone. These advancements in farming technology 
 are helping to feed the world, and improving the performance of this new technology 
 advances the previous progress that John Deere has made. 
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 Revised Design 

 Requirements 

 ●  Provide a standard image set for testing the algorithm via software to quantify 
 the loss. 

 ●  Create lightweight compression and decompression cores that are mappable to 
 FPGA or ASIC to minimize on-chip RAM usage. 

 ●  Compression and decompression are to be performed on a live input stream. 
 ●  The latency should be low enough to allow for near-zero latency computer 

 vision processing. 
 ●  Prioritize logic simplicity and pipelineability over compression ratio. 
 ●  Solution should be fully pipelineable, a key requirement to this is having each 

 encoded pixel of a predetermined size. 
 ●  Demonstration should show HDMI output from the FPGA to a 1920x1080 

 resolution monitor. 

 Engineering Standards 

 ●  Python, Java, and C++ for basic prototyping of the compression algorithms 
 ●  VHDL for the FPGA IPs 
 ●  Vitis HLS 
 ●  LZW video compression 
 ●  BWT data transformation 
 ●  AXI-Stream Video Formatting 
 ●  HDMI for transmitting the video from input and to output 
 ●  Data-size standardized formats (the Byte) 
 ●  Python for basic prototyping of the compression algorithms 
 ●  Java and C++ as well. 
 ●  VHDL for the FPGA IPs 
 ●  Vitis HLS 
 ●  LZW video compression 
 ●  BWT data transformation 
 ●  AXI-Stream Video Formatting 
 ●  HDMI for transmitting the video from input and to output 
 ●  Data-size standardized formats (the Byte) 
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 Security Concerns and Countermeasures 

 The only security concern for our project would be any third-party IPs we used hiding 
 secret code that steals data streamed through it. This concern is counter-measured by 
 using only IPs from reputable sources (Such as AMD). 

 Design Evolution 

 Our initial design had LZW compression and decompression, but our testing showed 
 that this algorithm would not be su�cient for compression with images, let alone 
 video. We decided to move to using pre-made compression and decompression IPs 
 from the XILINX marketplace, and modifying those to fit with our near-zero latency 
 HDMI passthrough system. This approach failed because of the extreme cost of these 
 IPs. We also tried to import the Vitis HLS Data Compression Library into our project. 
 While we could generate IPs using the HLS tool, we encountered problems with FPGA 
 space and input/output compatibility. Finally, we decided to create our own IPs with 
 simple compression and decompression schemes and successfully implemented this 
 strategy. We also made a design decision to do the compression and decompression 
 after the video stream had already made it through the VDMA. We made this decision 
 because our new compression had a fixed size of 16 bits on the output. The original 
 potential use of the VDMA was to use software to read the VDMA and provide metrics; 
 however, since we have a fixed compression ratio, we no longer have to collect that 
 data. 

 Implementation Details 

 Detailed Design 

 To describe our final implementation, we divided the discussion into three parts, each 
 with its own visual aid. The sections are built top-down, starting from our top-level 
 demonstration setup, then a flowchart outlining the functionality of our board, and 
 lastly, we highlighted the details of our compression scheme below. 
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 Figure 1 

 Figure 1 is a diagram that shows the top-level layout of our demonstration. Our 
 project emphasized a need for very low-latency compression. To highlight our 
 system's near-zero latency, we chose to demonstrate the HDMI video before and after 
 the compression/decompression pipeline. This approach allows us to inspect any 
 visual latency and analyze the e�ects of our loss side-by-side with the raw video 
 version. Monitor 1 displays the video from the video source PC, and Monitor 2 displays 
 the video from the output of our hardware pipeline. The demonstration runs using our 
 Vivado-generated hardware platform file (.xsa) and our C source code from Vitis to 
 flash the board with the hardware/software we designed while the PC drives the HDMI 
 source. 
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 Figure 2 

 Figure 2 lays out the hardware design and demonstrates the di�erent components we 
 used to build the pipeline. We chose the Zybo Z7-10 because it supports interfacing 
 with HDMI Input and Output. The Zybo Z7-10 is also home to a Zynq-7000 ARM/FPGA 
 SoC that allows us to interface with and map our solution to an FPGA. The plan for our 
 design was to establish an HDMI passthrough and then add in our custom cores as 
 needed. The pipeline starts by taking HDMI input and converting it to RGB using an IP 
 provided by Vivado. We then take the raw RGB data and convert it into an AXI-Stream 
 using other IP provided by Vivado. The Zynq7 processing system was initially used in 
 our project to collect performance metrics. However, the final implementation only 
 uses the processing system for configuring the VDMA and Video Timing Controllers 
 (not included in the schematic above). Our design runs the compression and 
 decompression after reading the frame bu�er from the VDMA. Details regarding the 
 compression scheme are outlined below in Figure 3. After the compression and 
 decompression, the AXI-Stream must be converted back into HDMI output. To do this, 
 we used the AXI-Stream to Video Out IP and the RGB to DVI IP to go from AXI-Stream 
 to HDMI data for output from the Zybo Z7-10. 
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 Figure 3 

 Figure 3 shows the compression scheme used in our final implementation. The 
 algorithms are simple yet e�ective, especially when considering the emphasis in the 
 requirements placed on our solution to be lightweight and logically simple. This 
 compression scheme drops the least significant three bits for the Red and Blue 
 channels and the bottom two least significant bits from the Green channel. This 
 approach allows the amount of RAM needed to store the data to be only ⅔ of the 
 original RAM needed while only needing one clock cycle to compute this. We chose an 
 RGB scheme of 5:6:5 instead of 6:5:5 or 5:5:6 because human eyes are more sensitive 
 to variations in green light than in red or blue. The encoded data is then directly fed 
 into the decompression IP so it can be converted back to 24 bits. To recover the lost 
 bits, we simply add “100” for three bits and “10” for two bits. We wrote a software 
 program that found that “000” may be the most common. However, we still chose 
 “100” as it is the median value between 1’b000 and 1’b111, and the distribution is near 
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 normal. This compression scheme allows us only to use 2/3 of the original RAM 
 requirement while achieving an error rate close to 0%. Although we are losing ⅓ of 
 the original bits, the furthest o� the red and blue component can be from the original 
 is 4, and the furthest o� the green can be is 2. This scheme yields a picture that saves a 
 lot of data while maintaining the original image e�ectively by leveraging the most 
 significant bits. 

 Testing 

 Process 

 Our software testing for LZW compression consisted of a Java implementation 
 of LZW coded by Benjamin. The LZW compression was also interfaced with a BWT in 
 python in order to facilitate more compression-e�cient results. 

 For hardware, testing was slightly challenging. One of our primary tests was to 
 visually inspect to see if our implementation is working, which admittedly is not the 
 most robust. While debugging our design we also used Internal Logic Analyzers 
 provided by Vivado that act like miniature oscilloscopes within the FPGA. We 
 confirmed that our compression/decompression was acting as expected when looking 
 at the waveforms from the ILAs. The main issue we ran into while testing was having 
 HDMI not output. There was very rarely an error that did not break HDMI output. 

 Since the hardware was challenging to test formally, we used software to get 
 some of our metrics. The compression standards implemented in hardware were also 
 implemented in software to allow us to see our data loss. We used raw images as the 
 input of a software program that compared the compressed and decompressed data to 
 the original data and found the percentage error di�erence. 
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 Results 

 Our software testing showed that LZW was insu�cient to use for compression 
 because we saw an increase in our raw image size of 50% in the compressed form, 
 even with a BWT formatting used beforehand. One such test showed a Raw file image 
 (.RAF) going from 55 to 85 MB of data. We found that the images did not have enough 
 patterns in the data to be useful for compression by LZW. Because LZW is one of the 
 only compression algorithms that would be simple enough for our small team to 
 implement in compression, this prodded us to come up with a plan to either focus on 
 premade compression algorithms such as those already designed by AMD for the 
 Zynq-7000 or a simple lossy algorithm for compression and decompression. 
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 Figure 4 

 Our hardware testing showed the quality and latency of the video coming out of the 
 FPGA. Figure 5 shows the regular video streaming on the left monitor while the 
 pipelined and decompressed video stream is on the right. This setup allowed us to see 
 how the fine details of an image looked the same after the 
 compression/decompression, but when there was a solid color (such as the sky), some 
 distortion was introduced. 

 Figure 5 

 Figure 6, shown above, pictures the right monitor outputting raw data from the PC 
 and the left monitor outputting the data after the compression/decompression 
 pipeline. We are displaying a stopwatch from the laptop in order to identify any 
 latency. We do not have a specific latency we were trying to meet; however, in this 
 image, one can see that the HDMI data is going through the pipeline faster than it is 
 getting to the display of the laptop driving the display. This demonstration meets the 
 near-zero latency requirement as it supports the entire stream with zero visual lag. 
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 Figure 6 

 Finally, shown below are three formulas that tell us a lot about our design’s 
 performance. The first calculation is the compression ratio, a metric that profiles how 
 much data is being saved. We focused more on a fast throughput but still had a ratio of 
 1.5:1, meaning we only store ⅔ of the original data. The following formula is 
 throughput. Our system uses a 134 MHz pixel clock and operates on 3 bytes per cycle. 
 These settings allow our compression and decompression IPs to support up to 402 
 MB/s, which is more than enough for our use cases. The last formula is how we 
 enumerate the loss of our data. It compares pre-pipeline and post-pipeline data and 
 figures out the percentage of error. For images, we take the average error per pixel as 
 our metric. Figure 8 below shows that our values were within 1 percent of the original 
 value. This fact means our image is at least 99% “correct.” This metric does not 
 account for everything when considering lost data. However, it helped us find that 
 RGB 5:6:5 was our best format and that by dropping less significant bits, our 
 “correctness” is higher than the amount of data we are losing. 

 ●  𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑅𝑎𝑡𝑖𝑜 =     𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙     𝐷𝑎𝑡𝑎     𝑆𝑖𝑧𝑒 
 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑     𝐷𝑎𝑡𝑎     𝑆𝑖𝑧𝑒 =  1 .  5    

 ●  𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =        𝑃𝑖𝑥𝑒  𝑙 
 𝐹𝑟𝑒𝑞 

   ×     #     𝑃𝑖𝑥𝑒𝑙𝑠 
 𝑐𝑦𝑐𝑙𝑒 ×  #     𝐵𝑦𝑡𝑒𝑠 

 𝑃𝑖𝑥𝑒𝑙 =     134     𝑀𝐻𝑧    ×     1    ×     3 =  402     𝑀𝐵 
 𝑠 
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 ●  𝑃𝑖𝑥𝑒  𝑙 
 𝐸𝑟𝑟𝑜𝑟  % 

= ( 𝑃𝑖𝑝𝑒𝑙𝑖𝑛  𝑒 
 𝑃𝑖𝑥𝑒𝑙 

−  𝑂𝑟𝑖𝑔𝑖𝑛𝑎  𝑙 
 𝑃𝑖𝑥𝑒𝑙 

)   ×  1 
 256 ×  100 

 Figure 7 

 Figure 7 displays the values outputted after running three raw test images through our 
 Python script, which implements the  equation shown above. As we can see,  𝑃𝑖𝑥𝑒  𝑙 

 𝐸𝑟𝑟𝑜𝑟  % 

 the average error percentage per pixel for the 3 test images is below 1%. Considering 
 that we are compressing the size by 1/3rd of the original image size, having the 
 average pixel error percentage below 1% is a major success. 

 Broader Context 
 Public Health, Safety, and Welfare:  This project a�ects the safety of a John Deere 
 customer because the video compression/decompression pipeline can be used for 
 enhanced machine vision capabilities, making the product safer. For example, 
 compressing video data allows more cameras to be running at once, which can provide 
 more data for an autonomous system. 

 Global, Cultural, and Social:  As mentioned above, this project gives equipment the 
 ability to have more cameras, which can improve autonomous capabilities. Autonomy 
 will be essential to aid in the farm labor shortage, keeping the agricultural industry 
 e�cient and making food accessible to even more people. 

 Economic:  This project decreases the memory needed, thus decreasing the hardware 
 cost of equipment, allowing manufacturers to decrease production costs and the final 
 sale price for farmers. 
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 Environmental:  With the decreased equipment cost, as mentioned previously, 
 farmers can invest in equipment for environmentally friendly practices such as 
 strip-tillers, which reduce soil erosion and increase organic matter in the soil. 
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 Conclusions 

 Progress Review 

 This semester, we began creating the hardware side of the compression by developing 
 an HDMI passthrough on the Xilinx Zynq-7000 Dev Board platform. At the same time, 
 the software team began work on getting real-world numbers for the LZW 
 compression algorithm. The software team's testing of LZW showed poor results and 
 pivoted the team's approach. After the two teams finished their work, the hardware 
 team and software team worked on attempting to use various IP's such as those from 
 AMD, and other 3rd party IP's as well. Those compression IPs given by AMD were 
 found to be incompatible with the AXI-stream. Our team managed to get a 3rd party 
 compression algorithm working. However, there was no easy way to decompress from 
 that algorithm. We determined that the compression algorithm would be useless for a 
 demo. Our team then worked on creating a simple compression and decompression 
 algorithm that we used in our final demo. After getting a working version of that 
 algorithm, we tested various di�erent parameters, like having more compression for 
 blue values and less compression for red and green values. Given the roadblocks we 
 have encountered that caused the course of our project to change, our implementation 
 is excellent. We still managed to produce an implementation that met as many 
 requirements and constraints as possible in the amount of time we had. 

 Discussion of Value 

 First and foremost, we helped our client by proving the idea of near-zero latency 
 compression and decompression of video is possible using a lightweight FPGA. We 
 also delivered a working implementation for our client to work with. We provided 
 insight into creating compression and decompression IPs and the feasibility of 
 purchasing a premade IP. We also delivered a software program to optimize the 
 compression loss rate depending on the type of images to be compressed (e.g., dry 
 farm fields with lots of reds vs. growing farm fields with lots of greens). Finally, we 
 created an excellent foundation for a future team of engineers to implement a more 
 robust compression and decompression algorithm in hardware. 
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 Future Steps 

 Our implementation of our FPGA is a perfect starting point for a larger (or another 
 senior design team) team to write and test more complex pipelined compression and 
 decompression algorithms than our team of 5 could realistically develop. Larger, more 
 robust compression and decompression algorithms allow for higher compression 
 ratios and a lower loss rate while being relatively similar in latency. Given our project 
 as a starting point, another team would not have to spend any time choosing 
 hardware and building up the HDMI passthrough and would benefit from the 
 knowledge we gained regarding purchasable and open-source FPGA solutions. 

 Appendices 

 Appendix 1 - Operation Manual 
 1)  Required Materials 

 ●  Zybo Z7-10 
 ●  4 HDMI Cables 
 ●  1:2 HDMI Splitter 
 ●  MicroUSB to USB Cable 
 ●  PC 
 ●  2x Power Adapters (Zybo & HDMI Splitter) 
 ●  2x HDMI Monitors 
 ●  Vivado 2020.1 
 ●  Vitis 2020.1 

 2) Physical Setup 
 I.  Plug in the Zybo board’s power 

 adapter in port 1 and then connect it to 
 a nearby outlet. 

 II.  Plug in the micro-USB side of 
 the micro-USB to USB Cable 
 into port 4, then plug in the 
 USB side into your computer. 

 III.  Plug in the power adapter of the HDMI 
 splitter and then have it connected to a 
 nearby outlet. 

 IV.  Connect one of the HDMI cables from 
 your computer to the input port on the 
 HDMI splitter. 
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 V.  Connect the second HDMI cable from the output port on the HDMI splitter to 
 port 3 (HDMI RX) on the Zybo board. 

 VI.  Connect the third HDMI cable from the other output port on the HDMI splitter 
 to the first monitor’s HDMI port. 

 VII.  Connect the fourth HDMI cable from port 2 (HDMI TX) on the Zybo board to the 
 second monitor’s HDMI port. 

 VIII.  Finally, make sure that the switch above port 4 on the Zybo board is flipped to 
 “ON”. You may now proceed to step 3. 

 3) Start by downloading vitis_492_final.ide.zip from 
 https://git.ece.iastate.edu/sd/sdmay24-12 

 4) Open Vitis 2020.1 on your machine (The icon should look like this) : 

 5)  Select a workspace to hold all of the associated directories and files from this 
 project and press launch, if you choose one that has not been created Vitis will create it 
 for you 

https://git.ece.iastate.edu/sd/sdmay24-12
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 6) Once Vitis is open select “Import Project” from the bottom left side of the User 
 Interface, choose “Vitis project exported .zip file” and select  vitis_492_final.ide.zip 
 (downloaded in step 3) 

 7) Ensure that all projects are selected and press finish 

 8) To build select Zybo-Z7-10_HDMI_system [System] and hit the build button 

 9)  Now, to launch this vitis application on hardware, ensure the Zybo Z7-10 is fully 
 set up to the PC, the HDMI interfaces, powered on, and the power adapter is plugged 
 in. Then, select the Application project from Vitis with a right click, navigate to Run 
 As, then select “Launch on Hardware (Single Application Debug)” 
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 10) The monitor hooked up to the HDMI TX port of the Zybo Z7-10 should now be 
 displaying the video after it has been compressed and decompressed. 

 11) A majority of the work we did for this project was on the hardware side. The Vitis 
 release already contains the hardware platform we developed, but if anyone would like 
 to edit or inspect our hardware project, it can also be found at 
 https://git.ece.iastate.edu/sd/sdmay24-12  . To launch the project,  select the .xpr file 
 after unzipping the archived project. The steps for updating the hardware platform 
 file from Vivado to a Vitis project can be found here if interested: 
 Vitis-In-Depth-Tutorial/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU10 
 4/step1.md at 2020.1 · Xilinx/Vitis-In-Depth-Tutorial · GitHub 

https://git.ece.iastate.edu/sd/sdmay24-12
https://github.com/Xilinx/Vitis-In-Depth-Tutorial/blob/2020.1/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/step1.md
https://github.com/Xilinx/Vitis-In-Depth-Tutorial/blob/2020.1/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/step1.md
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 Appendix 2 - Design Iterations 

 To dive deeper into the iterations mentioned earlier, we started the first 
 semester researching potential compression algorithms that would match project 
 requirements while matching feasibility concerning the amount of time we have. The 
 result was to implement an LZW encoder and decoder in C/Java and see which would 
 be the most e�cient to use as an IP in the schematic. Early second semester, we 
 started to develop the first few iterations of the encoder in parallel with the 
 production of the HDMI passthrough. The code worked flawlessly with testing, but 
 once we introduced images into the input, the compression size increased the file size 
 rather than reduced. To try and make the data more repetitive, which is where LZW 
 thrives, we tried adding a BWT implementation into the algorithm to rearrange the 
 data into alphanumeric sorted sequences. This addition did not help. Since the data 
 worked well with testing, we found that pulling in bytes of data would always be 
 treated as a signed byte leading to negative ASCII values (they do not exist but were 
 being created), messing up the encodings. This issue was a challenge we could not 
 overcome on top of the runtime of the bitstream taking longer than required. 

 Due to time constraints, we stopped trying to develop an IP with a specific 
 algorithm. We decided to look for a premade custom IP to add to the project but could 
 not find one that worked on our FPGA and fit within our allotted budget (all were over 
 $20,000 and did not allow a free evaluation period). Next, we set out to implement an 
 open-source Vitis HLS compression scheme by packaging it into an IP Core but faced 
 challenges of FPGA space and input/output compatibility. We also tried implementing 
 CCSDS123 compression into our system. We got the Internal Logic Analyzer from 
 Vivado to show that the CCSDS123 IP was outputting an AXI-Stream. However, there 
 was little to no documentation on how to decompress CCSDS123. Shifting plans again, 
 we decided to create our own IP with simple compression and decompression. We 
 implemented a compression algorithm with a quantization scheme that would 
 convert RGB 8:8:8 to RGB: 5:6:5. Then we decompressed those values by adding bits 
 back. We then used our one software program to optimize and quantify the values of 
 the bits we add back. We decided to add back the middle value of the 2 or 3 missing 
 bits. This approach means that if 3 bits were removed when compressing, then to 
 decompress, we will append the bits “100” to the end of the 5 bits to bring it back to 8 
 bits. In binary, “100” is the middle value of “111” and “000”, which provides a more 
 neutral approximation. 
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 Appendix 3 - Other Considerations 

 As mentioned in Appendix 2, we considered many other strategies to implement 
 compression and decompression other than the strategy we used. These strategies 
 included creating our own IP by writing a VHDL program of a compression algorithm 
 such as LZW, using a pre-made IP from the XILINX marketplace, and implementing 
 an open-source compression scheme into a packaged IP. 

 Appendix 4 - Code 

 Vivado Block Design 
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 Python Code for Testing Average Error Per Pixel: 

 import  rawpy 

 if  __name__ ==  "__main__"  : 
 check0 = check1 = check2 = check3 = check4 = check5 = check6 = check7 = 

 totalVarR = totalVarG = totalVarB =  0 
 # Open the file  for  image  to test 
 with rawpy.imread(  'C:/cygwin64/home/benme/491_Project/Java/Image3.NEF'  ) 

 as raw: 
 # Process  image  into an object 
 rgb = raw.postprocess() 
 height  ,  width  , _ = rgb.  shape 
 # Prints  width  ,  height  , and  color  channels 
 print  (rgb.  shape  ) 
 print  (  "Total Pixel  Count: "  +  str  (  height  *  width  )) 

 for  pxlw in range(  width  ): 
 for  pxlh in range(  height  ): 

 # Extract rgb values from pixel  map  twice 
 r, g, b = rgb[pxlh, pxlw] 
 rt, gt, bt = rgb[pxlh, pxlw] 
 # Alter the numbers like compression algorithm 
 rt = ((rt >>  3  ) <<  3  ) +  4 
 gt = ((gt >>  2  ) <<  2  ) +  2 
 bt = ((bt >>  3  ) <<  3  ) +  4 
 # Add to variance to total 
 totalVarR += (  abs  (r - rt)) /  256 
 totalVarG += (  abs  (g - gt)) /  256 
 totalVarB += (  abs  (b - bt)) /  256 

 # Divide variance of each variable by px count  for  average 
 totalVarR = totalVarR / (  width  *  height  ) 
 totalVarG = totalVarG / (  width  *  height  ) 
 totalVarB = totalVarB / (  width  *  height  ) 
 print  (  "Total Variance Red: "  +  str  (totalVarR *  100  )) 
 print  (  "Total Variance Green: "  +  str  (totalVarG *  100  )) 
 print  (  "Total Variance Blue: "  +  str  (totalVarB *  100  )) 
 print  (  "Total Variance per Pixel: "  +  str  (((totalVarR  + totalVarG + 

 totalVarB) /  3  ) *  100  )) 
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 Java Code for the LZW Compression Algorithm from the Initial Design: 

 private  static  void  LZW_Encoding  () { 
 int  keyCount  =  0  ; 
 HashMap  <  String  ,  Integer  >  enc  =  new  HashMap  <>(  MAX_ENTRIES  ); 
 // Populate the encryption HashMap with the 256 ASCII symbols 
 for  (;  keyCount  <  ASCII_ENTRIES  ;  keyCount  ++)  enc  .  put  (  ""  + (  char  )  keyCount  , 

 keyCount  ); 
 // Open a file and initialize bitsream variables 
 try  (  BufferedInputStream  bufferedInputStream  =  new 

 BufferedInputStream  (  new  FileInputStream  (  "./Java/Metal.dng"  )))  { 
 FileWriter  fw  =  new  FileWriter  (  "./Java/compressed.txt"  ); 
 BufferedWriter  bw  =  new  BufferedWriter  (  fw  ); 
 int  bytesRead  ; 
 byte  []  byteBuff  =  new  byte  [  4096  ]; 
 Charset  charset  =  Charset  .  forName  (  "UTF-8"  ); 
 CharsetDecoder  decoder  =  charset  .  newDecoder  (); 
 // While bitstream is reading 
 while  ((  bytesRead  =  bufferedInputStream  .  read  (  byteBuff  ))  != -  1  ) { 

 String  asc  =  ""  ; 
 // Initialize asc 
 for  (  int  i  =  0  ;  i  <  byteBuff  .  length  ;  i  ++) { 

 if  (  byteBuff  [  i  ] >=  0  )  asc  += (  char  )(  byteBuff  [  i  ]); 
 else  asc  += (  char  )(  256  + (  int  )(  byteBuff  [  i  ])); 

 } 

 int  iter  =  1  ; 
 String  P  =  ""  +  asc  .  charAt  (  0  ); 
 String  encryption  =  ""  ; 

 while  (  iter  <  asc  .  length  ()) { 
 char  C  =  asc  .  charAt  (  iter  ); 
 // If next char is in the map  add to pattern 
 if  (  enc  .  containsKey  (  P  +  C  )) { 

 P  +=  C  ; 



 24 

 }  else  { 
 int  []  code  =  new  int  [  2  ]; 
 code  [  0  ] = ((  enc  .  get  (  P  )) >>  8  ) &  0xFF  ; 
 code  [  1  ] = (  enc  .  get  (  P  ))  &  0xFF  ; 
 // New char was not in known patterns so check if entries 

 are full 
 if  (  enc  .  get  (  P  ) <  ASCII_ENTRIES  )  {  encryption  +=  "0"  + 

 (  char  )  code  [  1  ]; } 
 // HashMap is full so use the current possible code P 
 else  {  encryption  += (  char  )  code  [  0  ]  + (  char  )  code  [  1  ]; } 
 // Add new key and iterate  keyCount 
 if  (  keyCount  <  MAX_ENTRIES  )  { 

 enc  .  put  (  P  +  C  ,  keyCount  ); 
 keyCount  ++; 

 } 
 // Reset the pattern for next  iteration 
 P  =  ""  +  C  ; 

 } 
 // Handling the last case of a  stream 
 if  (  iter  ==  asc  .  length  () -  1  )  { 

 int  []  code  =  new  int  [  2  ]; 
 code  [  0  ] = ((  enc  .  get  (  P  )) >>  8  ) &  0xFF  ; 
 code  [  1  ] = (  enc  .  get  (  P  ))  &  0xFF  ; 
 if  (  enc  .  get  (  P  ) <  ASCII_ENTRIES  )  {  encryption  +=  "0"  + 

 (  char  )  code  [  1  ]; } 
 else  {  encryption  += (  char  )  code  [  0  ]  + (  char  )  code  [  1  ]; } 

 } 
 iter  ++; 

 } 
 bw  .  write  (  encryption  ); 

 } 
 bw  .  close  (); 

 }  catch  (  IOException  e  ) { 
 e  .  printStackTrace  (); 

 } 
 } 

 private  static  void  LZW_Decoding  () { 
 // Initialize variables for the HashMap 
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 int  keyCount  =  0  ; 
 HashMap  <  Integer  ,  String  >  enc  =  new  HashMap  <>(  MAX_ENTRIES  ); 
 for  (;  keyCount  <  ASCII_ENTRIES  ;  keyCount  ++)  enc  .  put  (  keyCount  ,  ""  + 

 (  char  )  keyCount  ); 
 // Open the compressed file and initialize stream 
 try  (  BufferedInputStream  bufferedInputStream  =  new 

 BufferedInputStream  (  new  FileInputStream  (  "./Java/compressed.txt"  )))  { 
 FileWriter  fw  =  new  FileWriter  (  "./newout.txt"  ); 
 BufferedWriter  bw  =  new  BufferedWriter  (  fw  ); 

 int  bytesRead  ; 
 byte  []  buffer  =  new  byte  [  4096  ]; 

 while  ((  bytesRead  =  bufferedInputStream  .  read  (  buffer  ))  != -  1  ) { 
 String  asc  =  ""  ; 
 // Initiailize variables for handling  incoming bytes 
 for  (  int  i  =  0  ;  i  <  buffer  .  length  ;  i  ++)  asc  += (  char  )(  buffer  [  i  ] & 

 0xFF  ); 
 int  []  code  = {  asc  .  charAt  (  0  ),  asc  .  charAt  (  1  )  }; 
 int  iter  =  2  ; 
 int  OLD  = ((  code  [  0  ] <<  8  ) &  0xFF  )  + (  code  [  1  ] &  0xFF  ); 
 int  NEW  ; 

 String  encryption  =  ""  +  enc  .  get  (  OLD  ); 
 String  S  =  ""  ; 
 char  C  =  ' '  ; 

 while  (  iter  <  asc  .  length  ()) { 
 // Start looking to find the decoding  sequence 
 code  [  0  ] =  asc  .  charAt  (  iter  ); 
 code  [  1  ] =  asc  .  charAt  (  iter  +  1  ); 
 NEW  = ((  code  [  0  ] <<  8  ) &  0xFF  )  + (  code  [  1  ] &  0xFF  ); 
 // Add key if new sequence 
 if  (!  enc  .  containsKey  (  NEW  )) { 

 S  =  enc  .  get  (  OLD  ) +  C  ; 
 }  else  { 

 // Else grab sequence 
 S  =  enc  .  get  (  NEW  ); 

 } 
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 encryption  +=  S  ; 
 C  =  S  .  charAt  (  0  ); 
 enc  .  put  (  keyCount  ,  enc  .  get  (  OLD  )  +  C  ); 
 keyCount  ++; 
 OLD  =  NEW  ; 
 iter  +=  2  ; 

 } 
 bw  .  write  (  encryption  ); 

 } 
 bw  .  close  (); 

 }  catch  (  IOException  e  ) { 
 e  .  printStackTrace  (); 

 } 
 } 


