Pipelined Hardware Video
Compressor & Decompressor

SDMay24-12

Logan McDermott, Kareem Eljaam, Caleb Rock, Benjamin Meinders, Colsen Selk

IOWA STATE UNIVERSITY

Introduction

Client: John Deere

Project Goal: Create a fully pipelineable image compression and
decompression scheme that is mappable to an FPGA. The goal is to
take live HDMI video input into an FPGA, run compression and
decompression, then output the new video stream to HDMI output

to observe the difference

Video Processing
Pipeline

JOWA STATE UNIVERSITY SDMay24-12 | 2

Context/Problem Statement

Problem: Computer vision applications rely on near-zero latency when
processing fast convolutions which is achieved with a fully-pipelined FPGA
design. The FPGA however, is limited by the amount of RAM it has available

for storing convolutional line buffers

Solution: Implement a compression core for the input of each line buffer
and a decompression core for the output of each line buffer that runs on a

live video stream

(R ™
: 2 z S Computer Vision
Input Video Stream —H Convolutional Line Buffer (RAM Limiited) ’—)’ Applications

S Current Computer Vision Pipeline J

(N
Input Video Stream \—> Compression Core =——— Convolutional Line Buffer (Compressed Data) = Decompression Core —)(Coﬂ)%fit:z;i\éféon 1
& y/

New Computer Vision Pipeline Idea

IOWA STATE UNIVERSITY SDMay24-12 | 3

Requirements

- Compression and decompression are to be performed on a live
input stream.

- The latency should be low enough to allow for near-zero latency
for computer vision processing.

-> Prioritize logic simplicity and pipelineability over compression
ratio.

- Each encoded pixel must be of a predetermined size, as a key

requirement for a fully pipelineable design.

JOWA STATE UNIVERSITY SDMay24-12 | 4

Hardware Decision

RO il ,3 > Zybo Z7-10

I‘u¢-§ ot B e \.

=t Ee— A DI RX and HDMI TX
iy) lncr'“;. rad-lelZ7 K : :
= “‘@ﬁ- = ;:WADIGILENI 56, i ~ Zynd-7000 ARM/EPGA
e gl g%;gg'a' 2 el ® ,' o SoC Development
| Board
" = Tutorial for HDMI
passthrough from

Digilent to get started

JOWA STATE UNIVERSITY SDMay24-12 | 5

Hardware Design

M—) DVI to RGB —)m
ZYbO Zynq-7000 Zynq7 l

27-10 ARM/FPGA [l
SoC

¢ ¢ AXI-Stream to ¢ Decompression
M RGE to DVI Video Out Core

[OWA STATE UNIVERSITY SDMay24-12 | 6

Failed Approaches

Purchasable IP Core Open Source IP Core Vitis HLS

- Sold by AMD - Opencores - High level synthesis

- Very expensive & Website for open - Generated IP

- Few compatible with source IP cores - Not compatible with

Zynqg-7000 ¢ Compatibility our HDMI passthrough
issues design (required
- CCSDS123 Algorithm system clock to be the
& Decompression same as pixel clock).

unavailable

¢ Intended use was

for 3D images.

JOWA STATE UNIVERSITY SDMay24-12 | 7

Compression Scheme

13112 }11]1019 |8 |Z|6]15]14]13:|2]1]0
{13]12|11[(10| 9 | 8
Input Data

l

Compression IP

15/1413)12(11{10/9 8| 7|6 [5[|4[(3]2]1]0
15/14|13(12]11]10
Encoded Data (After Compression IP)

Decompression IP

Output Data (After Decompression IP)
Black background with white font is approximated data

IOWA STATE UNIVERSITY SDMay24-12 | 8

Compression Details

- There are many ways to convert from RGB24 to RGB16
& Examples: 4:6:6 & 5:5:6
& All three colors cannot have same number of bits

- We chose 5:6:5 as our new color space

€ Human eyes are most sensitive to variance
in green light
4 Similar to Bayer filter being 50% green
- By only eliminating insignificant bits, the

Worst case scenario for recovering data is that
the red and blue values are off by 4 and the green
values are off by 2

- Number of possible colors before: 16,777, 216 —> 65,536 colors

IOWA STATE UNIVERSITY SDMay24-12 | 9

.124899563852
.124341329373
.124785325763
.123800735059
.12432885906

.124254303511
.124820590429
.128769292952

- To back up our choice for choosing 5:6:5, we

wrote a script to test the rate of occurrence for

~N~No b WON RO
ool oNoBOoNONONO

the last three bits on a byte

.128842048433
.124118122156
.126125923065
.127215007042
.126066811005
.124180389161
.121124126159
.122327572979

- Found that the results were near uniform with
a slight bias towards 000 (0) or 111 (7)

- Resulted in picking 4:2:4 respectively for the

0]
0]
0]
0]
0]
0]
0]
0]

~N oo phWNREO

values to append on the 5:6:5 (median) 134274798536

.131365429009
.1321702723
.129357901037
.123617870485
.11869804975
.114662062191
.115853616692

~N~No o WN RO
ool oo ONONBONO

IOWA STATE UNIVERSITY SDMay24-12 | 10

Demonstration Design

PC HDMI Output

.

——PC HDMI Output—>

— e

PC

IOWA STATE UNIVERSITY

HDMI Splitter

|

PC HDMI Output

Post Pipeline HDMI Data

Digilent Zybo Z7-
10

Power Source

SDMay24-12 | 11

Demonstration

TN o
LAl

253 g
B

IOWA STATE UNIVERSITY SDMay24-12 | 12

Testing/ Results

[OWA STATE UNIVERSITY SDMay24-12 | 13

Software Testing / LZW

- LZW was our first failed approach

7

Thrives off of repetitive data

- The algorithm was not used for implementation due to a slow
bitstream

- Was incapable of handling ASCII encodings above 127 which was
interpreted as negative bytes even with unsigned byte as data type

- Tried to implement BWT into the algorithm to increase repetitive

values

IOWA STATE UNIVERSITY SDMay24-12 | 14

Hardware Visual Testing / Results

Video Before Pipeline Video After Pipeline

Compression Ratio = Size of Original Data = 1.5 Amount of RAM.n.eeded is 1§educed to 66% of
Size of Compressed Data the original requirement

[OWA STATE UNIVERSITY SDMay24-12 | 15

Hardware Latency Testing / Results

IOWA STATE UNIVERSITY SDMay24-12 | 16

Hardware Throughput Testing / Results

Throughput = Pixel x —S2xels o #Bytes _ 134 MHz x 1 x 3 = 402 22
Freq cycle Pixel S

- Pixel Clock is driven by the Processing System at 134 MHz

- All three bytes of RGB 8:8:8 per pixel are compressed in parallel
so we calculate 3 bytes per pixel

- Our overall video throughput supports 402 MB/s with our
current design

- For context, 4k video only requires around 25 MB/s

IOWA STATE UNIVERSITY SDMay24-12 | 17

Data Loss Metrics / Testing

) X —— X 100

Pixel = (Pipelinepixel — Original T

Error% Pixel

for pxlw in range(width):
for pxlh in range(height):
Extract rgb values from pixel map twice
r, g, b = rgb[pxlh, pxlw]
rt, gt, bt = rgb[pxlh, pxlw]
Alter the numbers like compression algorithm
rt = ((rt > 3) << 3) +
gt = ((gt > 2) << 2) +
bt = ((bt > 2) << 3) +
Add to variance to total
totalvarR += (abs(r - rt)) /
totalvVarG += (abs(g - gt)) /
totalvarB += (abs(b - bt)) /
Divide variance of each variable by px count for average
totalVarR = totalVarR / (width * height)
totalVarG = totalVarG / (width * height)
totalVarB = totalVarB / (width * height)

IOWA STATE UNIVERSITY SDMay24-12 | 18

Data Loss Metrics / Results

Imagel.NEF
Total Pixel Count: 24304952

Total variance Red: ©.7993278167654888

Total variance Green: 0.39044459373443735
Total variance Blue: 0.7769971693937103
Total variance per Pixel: ©.6555898599645454

Pixel Error Percentage per Image
2.0

Image2.NEF
Total Pixel Count: 24304952

Total variance Red: 0.7857966718315265

Total variance Green: 0.3903381660916261
Total variance Blue: ©.7857019926947397
Total variance per Pixel: 0.6539456102059641

Pixel Error Percentage
o

0.5

0.0

1 2

Test Images

Image3.NEF
Total Pixel Count: 24321024

- Note: NEF are RAW image files that Total variance Red: ©.7841839006758105
Total variance Green: ©.3899334686730295

Total variance Blue: 0.7801492451808362
usually take Up > 25 MB Total variance per Pixel: 0.6514222048432254

IOWA STATE UNIVERSITY SDMay24-12 | 19

Conclusion

- Delivered a successful implementation of the requirements

Provided a foundation for another team to work from

7

- Obtained information regarding best strategies for
implementing compression algorithms
- Learned how to face roadblocks, change course, and still deliver

value

IOWA STATE UNIVERSITY SDMay24-12 | 20

