
SDMay24-12 1

SDMay24-12

Pipelined Hardware Video
Compressor & Decompressor

Logan McDermott, Kareem Eljaam, Caleb Rock, Benjamin Meinders, Colsen Selk

SDMay24-12 2

Client: John Deere

Project Goal: Create a fully pipelineable image compression and

decompression scheme that is mappable to an FPGA. The goal is to

take live HDMI video input into an FPGA, run compression and

decompression, then output the new video stream to HDMI output

to observe the difference

Introduction

Video Processing
Pipeline

HDMI HDMI

SDMay24-12 3

Problem: Computer vision applications rely on near-zero latency when

processing fast convolutions which is achieved with a fully-pipelined FPGA

design. The FPGA however, is limited by the amount of RAM it has available

for storing convolutional line buffers

Solution: Implement a compression core for the input of each line buffer

and a decompression core for the output of each line buffer that runs on a

live video stream

Context/Problem Statement

SDMay24-12 4

Requirements

➔ Compression and decompression are to be performed on a live

input stream.

➔ The latency should be low enough to allow for near-zero latency

for computer vision processing.

➔ Prioritize logic simplicity and pipelineability over compression

ratio.

➔ Each encoded pixel must be of a predetermined size, as a key

requirement for a fully pipelineable design.

SDMay24-12 5

Hardware Decision

➔ Zybo Z7-10

➔ HDMI RX and HDMI TX

➔ Zynq-7000 ARM/FPGA

SoC Development

Board

➔ Tutorial for HDMI

passthrough from

Digilent to get started

SDMay24-12 6

Hardware Design

SDMay24-12 7

Purchasable IP Core

➔ Sold by AMD

➔ Very expensive

➔ Few compatible with

Zynq-7000

Failed Approaches

Open Source IP Core

➔ Opencores

◆ Website for open

source IP cores

◆ Compatibility

issues

➔ CCSDS123 Algorithm

◆ Decompression

unavailable

◆ Intended use was

for 3D images.

Vitis HLS

➔ High level synthesis

➔ Generated IP

➔ Not compatible with

our HDMI passthrough

design (required

system clock to be the

same as pixel clock).

SDMay24-12 8

Compression Scheme

SDMay24-12 9

➔ There are many ways to convert from RGB24 to RGB16

◆ Examples: 4:6:6 & 5:5:6

◆ All three colors cannot have same number of bits

➔ We chose 5:6:5 as our new color space

◆ Human eyes are most sensitive to variance

in green light

◆ Similar to Bayer filter being 50% green

➔ By only eliminating insignificant bits, the

Worst case scenario for recovering data is that

the red and blue values are off by 4 and the green

values are off by 2

➔ Number of possible colors before: 16,777, 216 —> 65,536 colors

Compression Details

SDMay24-12 10

➔ To back up our choice for choosing 5:6:5, we

wrote a script to test the rate of occurrence for

the last three bits on a byte

➔ Found that the results were near uniform with

a slight bias towards 000 (0) or 111 (7)

➔ Resulted in picking 4:2:4 respectively for the

values to append on the 5:6:5 (median)

SDMay24-12 11

Demonstration Design

SDMay24-12 12

Demonstration

SDMay24-12 13

Testing/ Results

SDMay24-12 14

Software Testing / LZW

➔ LZW was our first failed approach

➔ Thrives off of repetitive data

➔ The algorithm was not used for implementation due to a slow

bitstream

➔ Was incapable of handling ASCII encodings above 127 which was

interpreted as negative bytes even with unsigned byte as data type

➔ Tried to implement BWT into the algorithm to increase repetitive

values

SDMay24-12 15

Hardware Visual Testing / Results

Video After PipelineVideo Before Pipeline

Compression Ratio = Size of Original Data = 1.5
 Size of Compressed Data

Amount of RAM needed is reduced to 66% of
the original requirement

SDMay24-12 16

Hardware Latency Testing / Results

SDMay24-12 17

Hardware Throughput Testing / Results

➔ Pixel Clock is driven by the Processing System at 134 MHz

➔ All three bytes of RGB 8:8:8 per pixel are compressed in parallel

so we calculate 3 bytes per pixel

➔ Our overall video throughput supports 402 MB/s with our

current design

➔ For context, 4k video only requires around 25 MB/s

SDMay24-12 18

Data Loss Metrics / Testing

SDMay24-12 19

Data Loss Metrics / Results

➔ Note: .NEF are RAW image files that

usually take up > 25 MB

SDMay24-12 20

Conclusion

➔ Delivered a successful implementation of the requirements

➔ Provided a foundation for another team to work from

➔ Obtained information regarding best strategies for

implementing compression algorithms

➔ Learned how to face roadblocks, change course, and still deliver

value

