

 The goal of this project is to provide a near-zero latency, fully pipelineable image
 compression scheme that can be mapped to an FPGA or ASIC. As of now, there is
 nearly zero latency performing convolutions on incoming data for image
 processing, but the amount of RAM is limited. We are looking to provide a very
 lightweight compression and decompression scheme that can be implemented at
 the input and output of each convolutional line buffer to reduce the amount of
 RAM needed. The end goal is to provide an RTL implementation on a Zynq Dev
 Board, and to deliver a demo with HDMI video into an FPGA, compression and
 decompression being performed on the live input stream. Ideally, a timer or clock
 will be displayed on the screen that provides real time latency information.

 Development Standards & Practices Used
 Hardware:

 ● Maintainability: Ensure modularity to uphold maintainability.
 ● Efficiency: Should not overuse resources.

 Software Practices:

 ● Reliability: code should work as close to 100% as possible
 ● Maintainability: code should be well documented, and up to format for

 modern day software for best possible readability
 ● Efficiency: code should be the most efficient solution (lowest Big-O

 possible)

 Summary of Requirements

 ● Research different algorithms that could be used to deal with the problem
 ● List of ideas on how to solve the problem
 ● Implement the software based on the most promising idea
 ● Provide an RTL or HLS implementation on a zynq dev board
 ● Deliver a live demo with an HDMI video into an FPGA with a clock

 displayed

 Applicable Courses from Iowa State University Curriculum
 - COM S 311
 - SE 329

 - CPRE 381
 - CPRE 281
 - COM S 309

 New Skills/Knowledge acquired that was not taught in courses
 Learning algorithms based around video compression and decompression.

 Table of Contents
 1 Team 5

 1.1 T EAM M EMBERS 5

 1.2 R EQUIRED S KILL S ETS FOR Y OUR P ROJECT 5

 (if feasible – tie them to the requirements) 5

 1.3 S KILL S ETS COVERED BY THE T EAM 5

 (for each skill, state which team member(s) cover it) 5

 1.4 P ROJECT M ANAGEMENT S TYLE A DOPTED BY THE TEAM 5

 1.5 I NITIAL P ROJECT M ANAGEMENT R OLES 5

 2 Introduction 5

 2.1 P ROBLEM S TATEMENT 5

 2.2 R EQUIREMENTS & C ONSTRAINTS 5

 2.3 E NGINEERING S TANDARDS 5

 2.4 I NTENDED U SERS AND U SES 6

 3 Project Plan 6

 3.1 Project Management/Tracking Procedures 6

 3.2 Task Decomposition 6

 3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

 3.4 Project Timeline/Schedule 6

 3.5 Risks And Risk Management/Mitigation 7

 3.6 Personnel Effort Requirements 7

 3.7 Other Resource Requirements 7

 4 Design 8

 4.1 Design Context 8

 4.1.1 Broader Context 8

 4.1.2 User Needs 8

 4.1.3 Prior Work/Solutions 8

 4.1.4 Technical Complexity 9

 4.2 Design Exploration 9

 4.2.1 Design Decisions 9

 4.2.2 Ideation 9

 4.2.3 Decision-Making and Trade-Off 9

 4.3 Proposed Design 9

 4.3.1 Design Visual and Description 10

 4.3.2 Functionality 10

 4.3.3 Areas of Concern and Development 10

 4.4 Technology Considerations 10

 4.5 Design Analysis 10

 4.6 Design Plan 10

 5 Testing 11

 5.1 Unit Testing 11

 5.2 Interface Testing 11

 5.3 Integration Testing 11

 5.4 System Testing 11

 5.5 Regression Testing 11

 5.6 Acceptance Testing 11

 5.7 Security Testing (if applicable) 11

 5.8 Results 11

 6 Implementation 12

 7 Professionalism 12

 7.1 Areas of Responsibility 12

 7.2 Project Specific Professional Responsibility Areas 12

 7.3 Most Applicable Professional Responsibility Area 12

 8 Closing Material 12

 8.1 Discussion 12

 8.2 Conclusion 12

 8.3 References 13

 8.4 Appendices 13

 8.4.1 Team Contract 13

 List of figures/tables/symbols/definitions (This should be the similar to the
 project plan)

 1 Team

 1.1 T EAM M EMBERS

 K AREEM E LJAAM , C ALEB R OCK , L OGAN M CDERMOTT , B EN M EINDERS , C OLSEN S ELK

 1.2 R EQUIRED S KILL S ETS FOR Y OUR P ROJECT

 P YTHON , VHDL, FPGA D ESIGN , KNOWLEDGE OF SOFTWARE ALGORITHMS

 1.3 S KILL S ETS COVERED BY THE T EAM

 Python: Colsen Selk, Ben Meinders, Kareem Eljaam

 VHDL: Kareem Eljaam, Caleb Rock, Logan McDermott

 FPGA: Logan McDermott, Kareem Eljaam, Caleb Rock

 Algorithms: Colsen Selk, Kareem Eljaam, Ben Meinders

 1.4 P ROJECT M ANAGEMENT S TYLE A DOPTED BY THE TEAM

 The manager will ensure project requirements are being fulfilled on track with the project
 timeline. Tasks will be facilitated to members weekly at team meetings and monitored via
 GitLab.

 1.5 I NITIAL P ROJECT M ANAGEMENT R OLES

 Colsen Selk, Algorithms. Kareem Eljaam, FPGA, manager. Caleb Rock, FPGA. Ben Meinders,
 Algorithms. Logan Mcdermott, FPGA. All members are responsible for communicating with each
 other regarding where the different areas of the project meet.

 2 Introduction

 2.1 P ROBLEM S TATEMENT

 What problem is your project trying to solve? Use non-technical jargon as much as possible.

 To create a realtime video compression and decompression system while keeping minimal loss in
 order to keep memory to a minimum.

 2.2 R EQUIREMENTS & C ONSTRAINTS

 List all requirements for your project . This includes functional requirements (specification),
 resource requirements, qualitative aesthetics requirements, economic/market requirements,
 environmental requirements, UI requirements, performance requirements, legal requirements,
 maintainability requirements, testing requirements and any others relevant to your project. When a
 requirement is also a quantitative constraint, either separate it into a list of constraints, or annotate
 at the end of requirement as “(constraint) ”. Other requirements can be a single list or can be
 broken out into multiple lists based on the category.

 ● Part 1: Software Implementation
 ○ Benchmark tradeoffs for various lightweight compression algorithms in Python

 ■ Considerations:
 ■ Latency VS Compression Amount
 ■ How much data is lost in each lossy compression algorithm?

 ● Part 2: Hardware Implementation
 ○ Minimize cost and complexity of FPGA
 ○ Maintain near zero latency of compression and decompression
 ○ The FPGA should be fully-pipelineable

 ● Part 3: Demo
 ○ Have a video (prior to compression) being streamed and an additional video being

 streamed from the FPGA showcasing video after being compressed and
 decompressed

 2.3 E NGINEERING S TANDARDS

 What Engineering standards are likely to apply to your project? Some standards might be built into
 your requirements (Use 802.11 ac wifi standard) and many others might fall out of design. For each
 standard listed, also provide a brief justification.

 HDMI for transmitting the video from input and to output.
 Compression algorithms such as M-JPEG, MPEG-4, and H. 264 for the video compression systems.
 python for basic prototyping of the compression algorithms, in order to find the best compression
 system for the job.

 2.4 I NTENDED U SERS AND U SES

 Who benefits from the results of your project? Who cares that it exists? How will they use it?
 Enumerating as many “use cases” as possible also helps you make sure that your requirements are
 complete (each use case may give rise to its own set of requirements).

 John Deere will use this project inside their equipment to reduce the cost they have to spend on
 memory. John Deere wants to use the system to make their computer vision systems more efficient.
 Reducing the memory usage could also have the factor of reducing processing time of their machine
 learning algorithms.

 3 Project Plan

 3.1 T ASK D ECOMPOSITION

 ● Part 1: Software Testing Implementation in Python
 ○ Research some well established algorithms for video compression and

 decompression
 ■ Choose 3-5 (or more) Algorithms to thoroughly benchmark the following

 metrics:
 ● Compression Ratio
 ● Latency
 ● Complexity

 ○ Find a dataset for testing the compression and decompression
 ■ Considering that the project demonstration will use HDMI and many

 development boards have HDMI controllers that convert the data to
 RGB24, find some input data we can use to test our algorithm that
 matches the RGB24 protocol.

 ○ Write the Python implementation that benchmarks the algorithms chosen
 beforehand

 ■ Based on the performance of the algorithms we test, we will choose an
 algorithm that we can implement in hardware

 ■ Explore parameterizing algorithms so that a knob could be used in the
 demonstration to control the latency vs compression ratio relationship.

 ● Part 2: FPGA Implementation + Demonstration
 ○ Choose a development board to implement the algorithm on for the

 demonstration
 ■ Note: HDMI Sink + Source and FPGA large enough to support the

 algorithm are the requirements for this developmental board
 ○ Create a plan/schematic for a pipelined FPGA solution for the selected algorithm
 ○ Implement the compression and decompression Algorithm on the FPGA and

 benchmark the compression ratio and latency
 ○ Gather the necessary hardware for the demonstration

 ■ 2 HDMI Monitors
 ■ 1 Development Board
 ■ 1 HDMI Splitter
 ■ 2 HDMI Cables

 ○ Final debugging and testing of the entire system working together

 3.2 P ROJECT M ANAGEMENT /T RACKING P ROCEDURES

 We will be using the agile management style for software development. We still intend on having a
 couple meetings a week and can use these meetings as SPRINTs for planning project
 goals/outcomes for the next meeting.

 Gitlab will track our issues when we work on the python elements of the project. We can also use
 the issues board to track progress on FPGA pipelining.

 3.3 P ROJECT P ROPOSED M ILESTONES , M ETRICS , AND E VALUATION C RITERIA

 ● Having a list of applicable video compression algorithms.
 ● Creating a framework to test video compression algorithms in python, and using that to

 pick our final compression algorithm.
 ● Having a design laid out of the pipeline
 ● Having the FPGA finalized
 ● In an agile development process, these milestones can be refined with successive

 iterations/sprints (perhaps a subset of your requirements applicable to those sprint).

 3.4 P ROJECT T IMELINE /S CHEDULE

 3.5 R ISKS A ND R ISK M ANAGEMENT /M ITIGATION

 Python implementation will have low risks (0.2) because python compression libraries exist and are
 pretty well established.

 Having a design of the FPGS will have high risks because putting a compression algorithm to
 hardware can be a complex, tedious, and abstract (0.5)

 - choose an algorithm with less complexity and with plenty of documentation to make the
 implementation easier

 Creating a list of applicable algorithms will be pretty low risk (0.05) because our requirements for
 picking algorithms are relatively simple: must be not too complex, must have low latency, must be
 implementable in hardware.

 An agile project can associate risks and risk mitigation with each sprint.

 3.6 P ERSONNEL E FFORT R EQUIREMENTS

 Task Man-Hours Explanation

 Algorithm Research 4 Spend enough but not too
 much time finding the most
 optimal algorithms to run on
 FPGA.

 Python Benchmarking
 Implementation

 10 Creating a Python program
 that can benchmark the
 different algorithm prototypes.

 Python compression
 algorithms

 20 Implementing various video
 compression/decompression
 algorithms in Python that take
 in a video as an input.

 Research and Choose a Dev
 Board For The Demonstration

 1-2 Choose a dev board that has
 HDMI sink & source,
 preferably one made for video
 processing

 Create a Plan/Schematic for
 the FPGA based on the
 software algorithm benchmark

 10 Based on the software
 implementation of the
 algorithm, make a plan for the
 architecture of the FPGA

 Implement the Compression
 part of the FPGA

 20 Write the VHDL code to
 compress an input stream of
 raw RGB24 values.

 Testing/Debugging of
 Compression Algorithm on
 FPGA

 10 Test some expected values
 including edge cases, debug
 accordingly until fully
 functional

 Implement the
 Decompression part of the
 FPGA

 20 Write the VHDL code to
 decompress an input stream of
 compressed RGB24 values.

 Testing of Decompression
 Algorithm on FPGA

 10 Test some expected values
 including edge cases, debug
 accordingly until fully
 functional

 Gather Hardware Needed for
 the Demo

 1-2 Make sure we have all required
 hardware for the demo
 whether that be from Deere or
 the TLA

 Final Debugging of the Entire
 System

 10 Having all the hardware for
 the demo set up and making

 sure everything works
 together.

 3.7 O THER R ESOURCE R EQUIREMENTS

 Potentially need a camera for live video.

 4 Design
 4.1 Design Content

 The design content of our project includes designing an efficient approach to implement a video
 compression and decompression algorithm on the Zynq 7000 FPGA. This requires having clear
 hardware designs/schematics that portray the functionality of the video pipeline on the FPGA.

 4.2 Design Complexity

 The design of a video compression system involves creating custom hardware and custom software,
 and requires them to cohesively work together along with given IP circuits that we must also
 choose. We must design video compression algorithms that work extremely fast, and have it
 interface with its associated hardware that we’ve designed. The hardware that we design will be very
 complex due to the nature of video compression and decompression. Hardware designs also take
 into account all the limitations and constraints that are ignored in software design.

 4.3 M ODERN E NGINEERING T OOLS

 Python will be used for the software side for video compression and decompression just to test
 algorithms. We will then have to write C code that does video compression. Some aspects of the
 video compression will be done in hardware, which at the easiest, requires the code to be designed
 in C and an API used to convert to hardware, and at the hardest, requires Verilog to be written for
 the hardware. Draw.io is a tool that will be used for drawing schematics and block level diagrams.

 HARDWARE TOOLS HERE (if any were missed)

 4.4 D ESIGN C ONTEXT

 Area Description Examples

 Public health,
 safety, and
 welfare

 This project can potentially indirectly affect
 the safety or well-being of a John Deere
 customer in the future since the video
 compression/decompression can be used for
 videos running on vehicle displays.

 Having lossy images/videos in a
 tractor/sprayer/etc. can provide a
 major risk of the vehicle
 malfunctioning.

 Global, cultural,
 and social

 This project could have applications in
 increasing crop yield for tractors. This project
 should decrease the cost of hardware inside
 tractors, allowing farmers to save money when
 they have to buy new tractors. This would lead
 to a reduction in the cost of food and crops.

 An efficient implementation will
 satisfy the client and potential
 customer’s aim of having a cheaper
 and more advanced solution.

 Environmental Having our client as John Deere may help
 illustrate the kind of environmental impact
 our project may have. Since tractors aren’t
 fully electric, they do pollute, but the idea of
 our project is to help tractors run more
 efficiently, therefore reducing the time of use.

 Our project being in the realm of
 precision farming means that as an
 engineer, we are trying to innovate
 the way tractors are traditionally
 operated, such that the added use of
 software, and hardware is able to
 automate tasks, increase yield, and
 decrease time allotted to various
 tasks.

 Economic This project will save money for both John
 Deere and farmers spending money on new
 tractors. This equipment might interface with
 technology that increases crop yield, and
 increases autonomy. This saves farmers
 money, increases supply on crops, and thus
 decreases the price of crops.

 Our solution being implemented on
 an FPGA leads to a decrease in cost
 for John Deere since it’ll be faster
 than a fully software approach and
 will off-load from the CPU. This
 results in freeing up more space on
 the CPU for other tasks.

 4.5 P RIOR W ORK /S OLUTIONS

 There exists dedicated hardware video compression chips. These however, are mainly only found on
 GPU’s, which require a lot of power, are expensive, and they are not dedicated to one singular task
 like our hardware will be. There also exists video compression algorithms and encoders like H265.
 Video compression techniques are also a thoroughly researched topic.

 4.6 D ESIGN D ECISIONS

 We’ve kept in mind complexity and cost when designing the layout of the hardware. We’ve also
 decided we will use the Zybo Z7-10 as our dev-board because it has both HDMI-in and HDMI-out.
 We’ve chosen to use VDMA in and out, Memory buffer as storage, CPU to interface with the
 hardware and possibly do some software compression with. We will also have our own custom
 hardware designs. We’ve chosen to have a CPU so that we can send information to memory, and we

 can interact with the hardware if needed, and so future engineers can interface with the CPU to
 receive the information to do other things with.

 4.7 P ROPOSED D ESIGN

 We’ve created a basic hardware diagram for how we want to lay out and arrange the components of
 our hardware. We’ve researched compression algorithms and techniques to be considered for
 implementation in hardware. We’ve gathered dev-boards to be used for testing and
 implementation.

 4.7.1 Design 0 (Initial Design)

 Design Visual and Description

 The Zybo Z7-10 converts the data on its HDMI RX line to allow for HDMI VDMA. This is how we
 will be accessing the HDMI data to run compression on. Once we have the VDMA data, we can
 compress it and send it to memory provided by the on-board DRAM. Once in memory, here is
 where we can leverage use of the on-board ARM processor to gather details on latency, compression
 ratio, memory savings, and loss amount for the algorithm. The Memory will store a compressed
 frame of the video to be accessed by other hardware and software out of the scope of this project.
 Then the compressed data will be taken out of memory and decompressed to provide a video.
 Another goal that we have is to view the tradeoffs between speed vs compression ratio vs video
 quality by allowing these metrics to be adjusted with some sort of dial or switch control interface.
 The first design states that we will be using the on-board slide switches but in the future, a separate
 dial peripheral could be added.

 Functionality

 Our design is intended to operate on John Deere equipment to minimize on device storage. All of
 the cameras on a tractor, sprayer, planter, combine harvester will need to have their video
 compressed with near-zero latency so that they do not require huge amounts of memory. The
 current design will hypothetically have near-zero latency and output lossless or near-lossless video
 after decompression thus satisfying the functional requirements. the hardware will temporarily
 keep the compressed video data in memory for future use.

 NOTE: T HE FOLLOWING SECTIONS WILL BE INCLUDED IN YOUR FINAL DESIGN DOCUMENT BUT DO NOT NEED

 TO BE COMPLETED FOR THE CURRENT ASSIGNMENT . T HEY ARE INCLUDED FOR YOUR REFERENCE . I F YOU HAVE

 IDEAS FOR THESE SECTIONS , THEY CAN ALSO BE DISCUSSED WITH YOUR TA AND / OR FACULTY ADVISER .

 4.7.2 Design 1 (Design Iteration)

 Include another most matured design iteration details. Describe what led to this iteration and what
 are the major changes that were needed in Design 0.

 Design Visual and Description

 Include a visual depiction of this design as well highlighting changes from Design 0. Describe these
 changes in detail. Justify them with respect to requirements.

 4.8 T ECHNOLOGY C ONSIDERATIONS

 Highlight the strengths, weakness, and trade-offs made in technology available.

 Discuss possible solutions and design alternatives

 4.9 D ESIGN A NALYSIS

 – Did your proposed design from 4.7 work? Why or why not?

 – What are your observations, thoughts, and ideas to modify or iterate further over the design?

 5 Testing
 Testing is an extremely important component of most projects, whether it involves a circuit, a
 process, power system, or software.

 The testing plan should connect the requirements and the design to the adopting test strategy and
 instruments. In this overarching introduction, given an overview of the testing strategy. Emphasize
 any unique challenges to testing for your system/design.

 5.1 U NIT T ESTING

 What units are being tested? How? Tools?

 ● Software Compression Algorithms
 ○ We will verify that the output after compressing and decompressing data matches

 the input. This will be done with a Python program to compute the output, and a
 diff tool if needed to see how the output and input differ. We should also verify
 that the algorithm is reducing the amount of storage needed to store data.

 ● Compression IP
 ○ The initial software testing will give us a way to validate that our intermediate

 values in hardware are correct. The compression IP will be tested using Vivado
 tools, HDL testbenches, and eventually tested physically during system level
 testing.

 ● Decompression IP
 ○ The decompression IP will operate very similarly to the Compression IP. It will also

 have to pass tests from Vivado and HDL testbenches to verify that it is converting
 compressed input back into the original output.

 5.2 I NTERFACE T ESTING

 What are the interfaces in your design? Discuss how the composition of two or more units (interfaces)
 are being tested. Tools?

 ● Hardware Interface(Zybo board): Using Vivado Synthesis, and Implementation
 ● Software Interface: Binary/Opcode files (pre-compiled files) (C/C++)

 5.3 I NTEGRATION T ESTING

 What are the critical integration paths in your design? Justification for criticality may come from your
 requirements. How will they be tested? Tools?

 The first step in our project is to create an HDMI pass-through demonstration. This will take an
 HDMI source, send it through the FPGA and output it to an HDMI display. To do this, we will start
 by seeing if we can get data from HDMI RX on the board in the FPGA. We will verify this using
 Vivado. Via unit testing we should be able to confirm that Compression and Decompression IPs
 work correctly so the last step is to make sure we can display the output of the Decompression IP on
 a display via HDMI. We will test this by verifying an image is displayed to the HDMI display.

 5.4 S YSTEM T ESTING

 Describe system level testing strategy. What set of unit tests, interface tests, and integration tests
 suffice for system level testing? This should be closely tied to the requirements. Tools?

 To test the entire system we plan on running a video stream through an HDMI cable that is plugged
 into the Zybo board. The video would go through an FPGA pipeline where it is compressed and
 stored in memory, afterwards there will be a decompressor in the pipeline that will take the
 compressed data and decompress it. The video will then go out through an HDMI cable into a
 monitor. Tests for this would include the Compression/Decompression IP unit tests, HDMI
 integration test, and interface tests for hardware and software.

 5.5 R EGRESSION T ESTING

 How are you ensuring that any new additions do not break the old functionality? What implemented
 critical features do you need to ensure they do not break? Is it driven by requirements? Tools?

 A tool that we will be using to ensure that new additions don’t negatively impact old ones is the use
 of git version control, and code reviews. Using these features will ensure that we never break our
 main source of code (main branch), and that new code will have to be reviewed by at least two
 people in order to get merged. Additionally, before any new changes are merged to the main
 branch, it will have to hit certain standards through the pipeline such as code coverage in order to
 be merged. Assuming that all of the new, and old tests are passing, should be enough to validate
 that the code is safe to merge into the main branch.

 5.6 A CCEPTANCE T ESTING

 How will you demonstrate that the design requirements, both functional and non-functional are
 being met? How would you involve your client in the acceptance testing?

 In order to check whether the design requirements are met, and have been completed to an
 acceptable level by the client’s standards, is to eventually get the software to run in a live demo,
 where an overlay will be brought over the video stream, to show different values such as data loss,
 and compression rate. If we run out of time during the development period, and don’t have ample
 time to develop an overlay, we could still create software that outputs these values to a log file,
 where we can verify that the software is working as intended.

 5.7 R ESULTS

 What are the results of your testing? How do they ensure compliance with the requirements? Include
 figures and tables to explain your testing process better. A summary narrative concluding that your
 design is as intended is useful.

 6 Implementation

 7 Professionalism

 8 Closing Material

