

‭The goal of this project is to provide a near-zero latency, fully pipelineable image‬
‭compression scheme that can be mapped to an FPGA or ASIC. As of now, there is‬
‭nearly zero latency performing convolutions on incoming data for image‬
‭processing, but the amount of RAM is limited. We are looking to provide a very‬
‭lightweight compression and decompression scheme that can be implemented at‬
‭the input and output of each convolutional line buffer to reduce the amount of‬
‭RAM needed. The end goal is to provide an RTL implementation on a Zynq Dev‬
‭Board, and to deliver a demo with HDMI video into an FPGA, compression and‬
‭decompression being performed on the live input stream. Ideally, a timer or clock‬
‭will be displayed on the screen that provides real time latency information.‬

‭Development Standards & Practices Used‬
‭Hardware:‬

‭●‬ ‭Maintainability: Ensure modularity to uphold maintainability.‬
‭●‬ ‭Efficiency: Should not overuse resources.‬

‭Software Practices:‬

‭●‬ ‭Reliability: code should work as close to 100% as possible‬
‭●‬ ‭Maintainability: code should be well documented, and up to format for‬

‭modern day software for best possible readability‬
‭●‬ ‭Efficiency: code should be the most efficient solution (lowest Big-O‬

‭possible)‬

‭Summary of Requirements‬

‭●‬ ‭Research different algorithms that could be used to deal with the problem‬
‭●‬ ‭List of ideas on how to solve the problem‬
‭●‬ ‭Implement the software based on the most promising idea‬
‭●‬ ‭Provide an RTL or HLS implementation on a zynq dev board‬
‭●‬ ‭Deliver a live demo with an HDMI video into an FPGA with a clock‬

‭displayed‬

‭Applicable Courses from Iowa State University Curriculum‬
‭- COM S 311‬
‭- SE 329‬

‭- CPRE 381‬
‭- CPRE 281‬
‭- COM S 309‬

‭New Skills/Knowledge acquired that was not taught in courses‬
‭Learning algorithms based around video compression and decompression.‬

‭Table of Contents‬
‭1‬ ‭Team‬ ‭5‬

‭1.1‬ ‭T‬‭EAM‬ ‭M‬‭EMBERS‬ ‭5‬

‭1.2‬ ‭R‬‭EQUIRED‬ ‭S‬‭KILL‬ ‭S‬‭ETS‬ ‭FOR‬ ‭Y‬‭OUR‬ ‭P‬‭ROJECT‬ ‭5‬

‭(if feasible – tie them to the requirements)‬ ‭5‬

‭1.3‬ ‭S‬‭KILL‬ ‭S‬‭ETS‬ ‭COVERED‬ ‭BY‬ ‭THE‬ ‭T‬‭EAM‬ ‭5‬

‭(for each skill, state which team member(s) cover it)‬ ‭5‬

‭1.4‬ ‭P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬ ‭S‬‭TYLE‬ ‭A‬‭DOPTED‬ ‭BY‬ ‭THE‬ ‭TEAM‬ ‭5‬

‭1.5‬ ‭I‬‭NITIAL‬ ‭P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬ ‭R‬‭OLES‬ ‭5‬

‭2‬ ‭Introduction‬ ‭5‬

‭2.1‬ ‭P‬‭ROBLEM‬ ‭S‬‭TATEMENT‬ ‭5‬

‭2.2‬ ‭R‬‭EQUIREMENTS‬ ‭& C‬‭ONSTRAINTS‬ ‭5‬

‭2.3‬ ‭E‬‭NGINEERING‬ ‭S‬‭TANDARDS‬ ‭5‬

‭2.4‬ ‭I‬‭NTENDED‬ ‭U‬‭SERS‬ ‭AND‬ ‭U‬‭SES‬ ‭6‬

‭3 Project Plan‬ ‭6‬

‭3.1 Project Management/Tracking Procedures‬ ‭6‬

‭3.2 Task Decomposition‬ ‭6‬

‭3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria‬ ‭6‬

‭3.4 Project Timeline/Schedule‬ ‭6‬

‭3.5 Risks And Risk Management/Mitigation‬ ‭7‬

‭3.6 Personnel Effort Requirements‬ ‭7‬

‭3.7 Other Resource Requirements‬ ‭7‬

‭4 Design‬ ‭8‬

‭4.1 Design Context‬ ‭8‬

‭4.1.1 Broader Context‬ ‭8‬

‭4.1.2 User Needs‬ ‭8‬

‭4.1.3 Prior Work/Solutions‬ ‭8‬

‭4.1.4 Technical Complexity‬ ‭9‬

‭4.2 Design Exploration‬ ‭9‬

‭4.2.1 Design Decisions‬ ‭9‬

‭4.2.2 Ideation‬ ‭9‬

‭4.2.3 Decision-Making and Trade-Off‬ ‭9‬

‭4.3‬ ‭Proposed Design‬ ‭9‬

‭4.3.1 Design Visual and Description‬ ‭10‬

‭4.3.2 Functionality‬ ‭10‬

‭4.3.3 Areas of Concern and Development‬ ‭10‬

‭4.4 Technology Considerations‬ ‭10‬

‭4.5 Design Analysis‬ ‭10‬

‭4.6‬ ‭Design Plan‬ ‭10‬

‭5 Testing‬ ‭11‬

‭5.1 Unit Testing‬ ‭11‬

‭5.2 Interface Testing‬ ‭11‬

‭5.3‬ ‭Integration Testing‬ ‭11‬

‭5.4‬ ‭System Testing‬ ‭11‬

‭5.5‬ ‭Regression Testing‬ ‭11‬

‭5.6‬ ‭Acceptance Testing‬ ‭11‬

‭5.7‬ ‭Security Testing (if applicable)‬ ‭11‬

‭5.8‬ ‭Results‬ ‭11‬

‭6 Implementation‬ ‭12‬

‭7 Professionalism‬ ‭12‬

‭7.1‬ ‭Areas of Responsibility‬ ‭12‬

‭7.2 Project Specific Professional Responsibility Areas‬ ‭12‬

‭7.3 Most Applicable Professional Responsibility Area‬ ‭12‬

‭8 Closing Material‬ ‭12‬

‭8.1 Discussion‬ ‭12‬

‭8.2 Conclusion‬ ‭12‬

‭8.3 References‬ ‭13‬

‭8.4 Appendices‬ ‭13‬

‭8.4.1 Team Contract‬ ‭13‬

‭List of figures/tables/symbols/definitions (‬‭This should be the similar to the‬
‭project plan)‬

‭1‬ ‭Team‬

‭1.1‬ ‭T‬‭EAM‬ ‭M‬‭EMBERS‬

‭K‬‭AREEM‬ ‭E‬‭LJAAM‬‭, C‬‭ALEB‬ ‭R‬‭OCK‬‭, L‬‭OGAN‬ ‭M‬‭CDERMOTT‬‭, B‬‭EN‬ ‭M‬‭EINDERS‬‭,‬‭C‬‭OLSEN‬ ‭S‬‭ELK‬

‭1.2‬ ‭R‬‭EQUIRED‬ ‭S‬‭KILL‬ ‭S‬‭ETS‬ ‭FOR‬ ‭Y‬‭OUR‬ ‭P‬‭ROJECT‬

‭P‬‭YTHON‬‭, VHDL, FPGA D‬‭ESIGN‬‭,‬‭KNOWLEDGE‬ ‭OF‬ ‭SOFTWARE‬ ‭ALGORITHMS‬

‭1.3‬ ‭S‬‭KILL‬ ‭S‬‭ETS‬ ‭COVERED‬ ‭BY‬ ‭THE‬ ‭T‬‭EAM‬

‭Python: Colsen Selk, Ben Meinders, Kareem Eljaam‬

‭VHDL: Kareem Eljaam, Caleb Rock, Logan McDermott‬

‭FPGA: Logan McDermott, Kareem Eljaam, Caleb Rock‬

‭Algorithms: Colsen Selk, Kareem Eljaam, Ben Meinders‬

‭1.4‬ ‭P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬ ‭S‬‭TYLE‬ ‭A‬‭DOPTED‬ ‭BY‬ ‭THE‬ ‭TEAM‬

‭The manager will ensure project requirements are being fulfilled on track with the project‬
‭timeline. Tasks will be facilitated to members weekly at team meetings and monitored via‬
‭GitLab.‬

‭1.5‬ ‭I‬‭NITIAL‬ ‭P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬ ‭R‬‭OLES‬

‭Colsen Selk, Algorithms. Kareem Eljaam, FPGA, manager. Caleb Rock, FPGA. Ben Meinders,‬
‭Algorithms. Logan Mcdermott, FPGA. All members are responsible for communicating with each‬
‭other regarding where the different areas of the project meet.‬

‭2‬ ‭Introduction‬

‭2.1‬ ‭P‬‭ROBLEM‬ ‭S‬‭TATEMENT‬

‭What problem is your project trying to solve? Use non-technical jargon as much as possible.‬

‭To create a realtime video compression and decompression system while keeping minimal loss in‬
‭order to keep memory to a minimum.‬

‭2.2‬ ‭R‬‭EQUIREMENTS‬ ‭& C‬‭ONSTRAINTS‬

‭List all requirements for your project . This includes functional requirements (specification),‬
‭resource requirements, qualitative aesthetics requirements, economic/market requirements,‬
‭environmental requirements, UI requirements, performance requirements, legal requirements,‬
‭maintainability requirements, testing requirements and any others relevant to your project. When a‬
‭requirement is also a quantitative constraint, either separate it into a list of constraints, or annotate‬
‭at the end of requirement as‬‭“(constraint)‬‭”. Other‬‭requirements can be a single list or can be‬
‭broken out into multiple lists based on the category.‬

‭●‬ ‭Part 1: Software Implementation‬
‭○‬ ‭Benchmark tradeoffs for various lightweight compression algorithms in Python‬

‭■‬ ‭Considerations:‬
‭■‬ ‭Latency VS Compression Amount‬
‭■‬ ‭How much data is lost in each lossy compression algorithm?‬

‭●‬ ‭Part 2: Hardware Implementation‬
‭○‬ ‭Minimize cost and complexity of FPGA‬
‭○‬ ‭Maintain near zero latency of compression and decompression‬
‭○‬ ‭The FPGA should be fully-pipelineable‬

‭●‬ ‭Part 3: Demo‬
‭○‬ ‭Have a video (prior to compression) being streamed and an additional video being‬

‭streamed from the FPGA showcasing video after being compressed and‬
‭decompressed‬

‭2.3‬ ‭E‬‭NGINEERING‬ ‭S‬‭TANDARDS‬

‭What Engineering standards are likely to apply to your project? Some standards might be built into‬
‭your requirements (Use 802.11 ac wifi standard) and many others might fall out of design. For each‬
‭standard listed, also provide a brief justification.‬

‭HDMI for transmitting the video from input and to output.‬
‭Compression algorithms such as M-JPEG, MPEG-4, and H. 264 for the video compression systems.‬
‭python for basic prototyping of the compression algorithms, in order to find the best compression‬
‭system for the job.‬

‭2.4‬ ‭I‬‭NTENDED‬ ‭U‬‭SERS‬ ‭AND‬ ‭U‬‭SES‬

‭Who benefits from the results of your project? Who cares that it exists? How will they use it?‬
‭Enumerating as many “use cases” as possible also helps you make sure that your requirements are‬
‭complete (each use case may give rise to its own set of requirements).‬

‭John Deere will use this project inside their equipment to reduce the cost they have to spend on‬
‭memory. John Deere wants to use the system to make their computer vision systems more efficient.‬
‭Reducing the memory usage could also have the factor of reducing processing time of their machine‬
‭learning algorithms.‬

‭3‬ ‭Project Plan‬

‭3.1‬ ‭T‬‭ASK‬ ‭D‬‭ECOMPOSITION‬

‭●‬ ‭Part 1: Software Testing Implementation in Python‬
‭○‬ ‭Research some well established algorithms for video compression and‬

‭decompression‬
‭■‬ ‭Choose 3-5 (or more) Algorithms to thoroughly benchmark the following‬

‭metrics:‬
‭●‬ ‭Compression Ratio‬
‭●‬ ‭Latency‬
‭●‬ ‭Complexity‬

‭○‬ ‭Find a dataset for testing the compression and decompression‬
‭■‬ ‭Considering that the project demonstration will use HDMI and many‬

‭development boards have HDMI controllers that convert the data to‬
‭RGB24, find some input data we can use to test our algorithm that‬
‭matches the RGB24 protocol.‬

‭○‬ ‭Write the Python implementation that benchmarks the algorithms chosen‬
‭beforehand‬

‭■‬ ‭Based on the performance of the algorithms we test, we will choose an‬
‭algorithm that we can implement in hardware‬

‭■‬ ‭Explore parameterizing algorithms so that a knob could be used in the‬
‭demonstration to control the latency vs compression ratio relationship.‬

‭●‬ ‭Part 2: FPGA Implementation + Demonstration‬
‭○‬ ‭Choose a development board to implement the algorithm on for the‬

‭demonstration‬
‭■‬ ‭Note: HDMI Sink + Source and FPGA large enough to support the‬

‭algorithm are the requirements for this developmental board‬
‭○‬ ‭Create a plan/schematic for a pipelined FPGA solution for the selected algorithm‬
‭○‬ ‭Implement the compression and decompression Algorithm on the FPGA and‬

‭benchmark the compression ratio and latency‬
‭○‬ ‭Gather the necessary hardware for the demonstration‬

‭■‬ ‭2 HDMI Monitors‬
‭■‬ ‭1 Development Board‬
‭■‬ ‭1 HDMI Splitter‬
‭■‬ ‭2 HDMI Cables‬

‭○‬ ‭Final debugging and testing of the entire system working together‬

‭3.2‬ ‭P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬‭/T‬‭RACKING‬ ‭P‬‭ROCEDURES‬

‭We will be using the agile management style for software development. We still intend on having a‬
‭couple meetings a week and can use these meetings as SPRINTs for planning project‬
‭goals/outcomes for the next meeting.‬

‭Gitlab will track our issues when we work on the python elements of the project. We can also use‬
‭the issues board to track progress on FPGA pipelining.‬

‭3.3‬ ‭P‬‭ROJECT‬ ‭P‬‭ROPOSED‬ ‭M‬‭ILESTONES‬‭, M‬‭ETRICS‬‭,‬‭AND‬ ‭E‬‭VALUATION‬ ‭C‬‭RITERIA‬

‭●‬ ‭Having a list of applicable video compression algorithms.‬
‭●‬ ‭Creating a framework to test video compression algorithms in python, and using that to‬

‭pick our final compression algorithm.‬
‭●‬ ‭Having a design laid out of the pipeline‬
‭●‬ ‭Having the FPGA finalized‬
‭●‬ ‭In an agile development process, these milestones can be refined with successive‬

‭iterations/sprints (perhaps a subset of your requirements applicable to those sprint).‬

‭3.4‬ ‭P‬‭ROJECT‬ ‭T‬‭IMELINE‬‭/S‬‭CHEDULE‬

‭3.5‬ ‭R‬‭ISKS‬ ‭A‬‭ND‬ ‭R‬‭ISK‬ ‭M‬‭ANAGEMENT‬‭/M‬‭ITIGATION‬

‭Python implementation will have low risks (0.2) because python compression libraries exist and are‬
‭pretty well established.‬

‭Having a design of the FPGS will have high risks because putting a compression algorithm to‬
‭hardware can be a complex, tedious, and abstract (0.5)‬

‭-‬ ‭choose an algorithm with less complexity and with plenty of documentation to make the‬
‭implementation easier‬

‭Creating a list of applicable algorithms will be pretty low risk (0.05) because our requirements for‬
‭picking algorithms are relatively simple: must be not too complex, must have low latency, must be‬
‭implementable in hardware.‬

‭An agile project can associate risks and risk mitigation with each sprint.‬

‭3.6‬ ‭P‬‭ERSONNEL‬ ‭E‬‭FFORT‬ ‭R‬‭EQUIREMENTS‬

‭Task‬ ‭Man-Hours‬ ‭Explanation‬

‭Algorithm Research‬ ‭4‬ ‭Spend enough but not too‬
‭much time finding the most‬
‭optimal algorithms to run on‬
‭FPGA.‬

‭Python Benchmarking‬
‭Implementation‬

‭10‬ ‭Creating a Python program‬
‭that can benchmark the‬
‭different algorithm prototypes.‬

‭Python compression‬
‭algorithms‬

‭20‬ ‭Implementing various video‬
‭compression/decompression‬
‭algorithms in Python that take‬
‭in a video as an input.‬

‭Research and Choose a Dev‬
‭Board For The Demonstration‬

‭1-2‬ ‭Choose a dev board that has‬
‭HDMI sink & source,‬
‭preferably one made for video‬
‭processing‬

‭Create a Plan/Schematic for‬
‭the FPGA based on the‬
‭software algorithm benchmark‬

‭10‬ ‭Based on the software‬
‭implementation of the‬
‭algorithm, make a plan for the‬
‭architecture of the FPGA‬

‭Implement the Compression‬
‭part of the FPGA‬

‭20‬ ‭Write the VHDL code to‬
‭compress an input stream of‬
‭raw RGB24 values.‬

‭Testing/Debugging of‬
‭Compression Algorithm on‬
‭FPGA‬

‭10‬ ‭Test some expected values‬
‭including edge cases, debug‬
‭accordingly until fully‬
‭functional‬

‭Implement the‬
‭Decompression part of the‬
‭FPGA‬

‭20‬ ‭Write the VHDL code to‬
‭decompress an input stream of‬
‭compressed RGB24 values.‬

‭Testing of Decompression‬
‭Algorithm on FPGA‬

‭10‬ ‭Test some expected values‬
‭including edge cases, debug‬
‭accordingly until fully‬
‭functional‬

‭Gather Hardware Needed for‬
‭the Demo‬

‭1-2‬ ‭Make sure we have all required‬
‭hardware for the demo‬
‭whether that be from Deere or‬
‭the TLA‬

‭Final Debugging of the Entire‬
‭System‬

‭10‬ ‭Having all the hardware for‬
‭the demo set up and making‬

‭sure everything works‬
‭together.‬

‭3.7‬ ‭O‬‭THER‬ ‭R‬‭ESOURCE‬ ‭R‬‭EQUIREMENTS‬

‭Potentially need a camera for live video.‬

‭4‬ ‭Design‬
‭4.1 Design Content‬

‭The design content of our project includes designing an efficient approach to implement a video‬
‭compression and decompression algorithm on the Zynq 7000 FPGA. This requires having clear‬
‭hardware designs/schematics that portray the functionality of the video pipeline on the FPGA.‬

‭4.2 Design Complexity‬

‭The design of a video compression system involves creating custom hardware and custom software,‬
‭and requires them to cohesively work together along with given IP circuits that we must also‬
‭choose. We must design video compression algorithms that work extremely fast, and have it‬
‭interface with its associated hardware that we’ve designed. The hardware that we design will be very‬
‭complex due to the nature of video compression and decompression. Hardware designs also take‬
‭into account all the limitations and constraints that are ignored in software design.‬

‭4.3 M‬‭ODERN‬ ‭E‬‭NGINEERING‬ ‭T‬‭OOLS‬

‭Python will be used for the software side for video compression and decompression just to test‬
‭algorithms. We will then have to write C code that does video compression. Some aspects of the‬
‭video compression will be done in hardware, which at the easiest, requires the code to be designed‬
‭in C and an API used to convert to hardware, and at the hardest, requires Verilog to be written for‬
‭the hardware. Draw.io is a tool that will be used for drawing schematics and block level diagrams.‬

‭HARDWARE TOOLS HERE (if any were missed)‬

‭4.4 D‬‭ESIGN‬ ‭C‬‭ONTEXT‬

‭Area‬ ‭Description‬ ‭Examples‬

‭Public health,‬
‭safety, and‬
‭welfare‬

‭This project can potentially indirectly affect‬
‭the safety or well-being of a John Deere‬
‭customer in the future since the video‬
‭compression/decompression can be used for‬
‭videos running on vehicle displays.‬

‭Having lossy images/videos in a‬
‭tractor/sprayer/etc. can provide a‬
‭major risk of the vehicle‬
‭malfunctioning.‬

‭Global, cultural,‬
‭and social‬

‭This project could have applications in‬
‭increasing crop yield for tractors. This project‬
‭should decrease the cost of hardware inside‬
‭tractors, allowing farmers to save money when‬
‭they have to buy new tractors. This would lead‬
‭to a reduction in the cost of food and crops.‬

‭An efficient implementation will‬
‭satisfy the client and potential‬
‭customer’s aim of having a cheaper‬
‭and more advanced solution.‬

‭Environmental‬ ‭Having our client as John Deere may help‬
‭illustrate the kind of environmental impact‬
‭our project may have. Since tractors aren’t‬
‭fully electric, they do pollute, but the idea of‬
‭our project is to help tractors run more‬
‭efficiently, therefore reducing the time of use.‬

‭Our project being in the realm of‬
‭precision farming means that as an‬
‭engineer, we are trying to innovate‬
‭the way tractors are traditionally‬
‭operated, such that the added use of‬
‭software, and hardware is able to‬
‭automate tasks, increase yield, and‬
‭decrease time allotted to various‬
‭tasks.‬

‭Economic‬ ‭This project will save money for both John‬
‭Deere and farmers spending money on new‬
‭tractors. This equipment might interface with‬
‭technology that increases crop yield, and‬
‭increases autonomy. This saves farmers‬
‭money, increases supply on crops, and thus‬
‭decreases the price of crops.‬

‭Our solution being implemented on‬
‭an FPGA leads to a decrease in cost‬
‭for John Deere since it’ll be faster‬
‭than a fully software approach and‬
‭will off-load from the CPU. This‬
‭results in freeing up more space on‬
‭the CPU for other tasks.‬

‭4.5 P‬‭RIOR‬ ‭W‬‭ORK‬‭/S‬‭OLUTIONS‬

‭There exists dedicated hardware video compression chips. These however, are mainly only found on‬
‭GPU’s, which require a lot of power, are expensive, and they are not dedicated to one singular task‬
‭like our hardware will be. There also exists video compression algorithms and encoders like H265.‬
‭Video compression techniques are also a thoroughly researched topic.‬

‭4.6 D‬‭ESIGN‬ ‭D‬‭ECISIONS‬

‭We’ve kept in mind complexity and cost when designing the layout of the hardware. We’ve also‬
‭decided we will use the Zybo Z7-10 as our dev-board because it has both HDMI-in and HDMI-out.‬
‭We’ve chosen to use VDMA in and out, Memory buffer as storage, CPU to interface with the‬
‭hardware and possibly do some software compression with. We will also have our own custom‬
‭hardware designs. We’ve chosen to have a CPU so that we can send information to memory, and we‬

‭can interact with the hardware if needed, and so future engineers can interface with the CPU to‬
‭receive the information to do other things with.‬

‭4.7 P‬‭ROPOSED‬ ‭D‬‭ESIGN‬

‭We’ve created a basic hardware diagram for how we want to lay out and arrange the components of‬
‭our hardware. We’ve researched compression algorithms and techniques to be considered for‬
‭implementation in hardware. We’ve gathered dev-boards to be used for testing and‬
‭implementation.‬

‭4.7.1 Design 0 (Initial Design)‬

‭Design Visual and Description‬

‭The Zybo Z7-10 converts the data on its HDMI RX line to allow for HDMI VDMA. This is how we‬
‭will be accessing the HDMI data to run compression on. Once we have the VDMA data, we can‬
‭compress it and send it to memory provided by the on-board DRAM. Once in memory, here is‬
‭where we can leverage use of the on-board ARM processor to gather details on latency, compression‬
‭ratio, memory savings, and loss amount for the algorithm. The Memory will store a compressed‬
‭frame of the video to be accessed by other hardware and software out of the scope of this project.‬
‭Then the compressed data will be taken out of memory and decompressed to provide a video.‬
‭Another goal that we have is to view the tradeoffs between speed vs compression ratio vs video‬
‭quality by allowing these metrics to be adjusted with some sort of dial or switch control interface.‬
‭The first design states that we will be using the on-board slide switches but in the future, a separate‬
‭dial peripheral could be added.‬

‭Functionality‬

‭Our design is intended to operate on John Deere equipment to minimize on device storage. All of‬
‭the cameras on a tractor, sprayer, planter, combine harvester will need to have their video‬
‭compressed with near-zero latency so that they do not require huge amounts of memory. The‬
‭current design will hypothetically have near-zero latency and output lossless or near-lossless video‬
‭after decompression thus satisfying the functional requirements. the hardware will temporarily‬
‭keep the compressed video data in memory for future use.‬

‭NOTE: T‬‭HE‬ ‭FOLLOWING‬‭SECTIONS‬ ‭WILL‬ ‭BE‬ ‭INCLUDED‬‭IN‬ ‭YOUR‬ ‭FINAL‬ ‭DESIGN‬ ‭DOCUMENT‬ ‭BUT‬ ‭DO‬ ‭NOT‬ ‭NEED‬

‭TO‬ ‭BE‬ ‭COMPLETED‬ ‭FOR‬ ‭THE‬ ‭CURRENT‬ ‭ASSIGNMENT‬‭. T‬‭HEY‬ ‭ARE‬ ‭INCLUDED‬‭FOR‬ ‭YOUR‬ ‭REFERENCE‬‭. I‬‭F‬ ‭YOU‬‭HAVE‬

‭IDEAS‬ ‭FOR‬ ‭THESE‬ ‭SECTIONS‬‭,‬‭THEY‬ ‭CAN‬ ‭ALSO‬ ‭BE‬ ‭DISCUSSED‬ ‭WITH‬ ‭YOUR‬ ‭TA‬‭AND‬‭/‬‭OR‬ ‭FACULTY‬ ‭ADVISER‬‭.‬

‭4.7.2 Design 1 (Design Iteration)‬

‭Include another most matured design iteration details. Describe what led to this iteration and what‬
‭are the major changes that were needed in Design 0.‬

‭Design Visual and Description‬

‭Include a visual depiction of this design as well highlighting changes from Design 0. Describe these‬
‭changes in detail. Justify them with respect to requirements.‬

‭4.8 T‬‭ECHNOLOGY‬ ‭C‬‭ONSIDERATIONS‬

‭Highlight the strengths, weakness, and trade‐offs made in technology available.‬

‭Discuss possible solutions and design alternatives‬

‭4.9 D‬‭ESIGN‬ ‭A‬‭NALYSIS‬

‭– Did your proposed design from 4.7 work? Why or why not?‬

‭– What are your observations, thoughts, and ideas to modify or iterate further over the design?‬

‭5‬ ‭Testing‬
‭Testing is an‬‭extremely‬‭important component of most‬‭projects, whether it involves a circuit, a‬
‭process, power system, or software.‬

‭The testing plan should connect the requirements and the design to the adopting test strategy and‬
‭instruments. In this overarching introduction, given an overview of the testing strategy. Emphasize‬
‭any unique challenges to testing for your system/design.‬

‭5.1 U‬‭NIT‬ ‭T‬‭ESTING‬

‭What units are being tested? How? Tools?‬

‭●‬ ‭Software Compression Algorithms‬
‭○‬ ‭We will verify that the output after compressing and decompressing data matches‬

‭the input. This will be done with a Python program to compute the output, and a‬
‭diff tool if needed to see how the output and input differ. We should also verify‬
‭that the algorithm is reducing the amount of storage needed to store data.‬

‭●‬ ‭Compression IP‬
‭○‬ ‭The initial software testing will give us a way to validate that our intermediate‬

‭values in hardware are correct. The compression IP will be tested using Vivado‬
‭tools, HDL testbenches, and eventually tested physically during system level‬
‭testing.‬

‭●‬ ‭Decompression IP‬
‭○‬ ‭The decompression IP will operate very similarly to the Compression IP. It will also‬

‭have to pass tests from Vivado and HDL testbenches to verify that it is converting‬
‭compressed input back into the original output.‬

‭5.2 I‬‭NTERFACE‬ ‭T‬‭ESTING‬

‭What are the interfaces in your design? Discuss how the composition of two or more units (interfaces)‬
‭are being tested. Tools?‬

‭●‬ ‭Hardware Interface(Zybo board): Using Vivado Synthesis, and Implementation‬
‭●‬ ‭Software Interface: Binary/Opcode files (pre-compiled files) (C/C++)‬

‭5.3 I‬‭NTEGRATION‬ ‭T‬‭ESTING‬

‭What are the critical integration paths in your design? Justification for criticality may come from your‬
‭requirements. How will they be tested? Tools?‬

‭The first step in our project is to create an HDMI pass-through demonstration. This will take an‬
‭HDMI source, send it through the FPGA and output it to an HDMI display. To do this, we will start‬
‭by seeing if we can get data from HDMI RX on the board in the FPGA. We will verify this using‬
‭Vivado. Via unit testing we should be able to confirm that Compression and Decompression IPs‬
‭work correctly so the last step is to make sure we can display the output of the Decompression IP on‬
‭a display via HDMI. We will test this by verifying an image is displayed to the HDMI display.‬

‭5.4 S‬‭YSTEM‬ ‭T‬‭ESTING‬

‭Describe system level testing strategy. What set of unit tests, interface tests, and integration tests‬
‭suffice for system level testing? This should be closely tied to the requirements. Tools?‬

‭To test the entire system we plan on running a video stream through an HDMI cable that is plugged‬
‭into the Zybo board. The video would go through an FPGA pipeline where it is compressed and‬
‭stored in memory, afterwards there will be a decompressor in the pipeline that will take the‬
‭compressed data and decompress it. The video will then go out through an HDMI cable into a‬
‭monitor. Tests for this would include the Compression/Decompression IP unit tests, HDMI‬
‭integration test, and interface tests for hardware and software.‬

‭5.5 R‬‭EGRESSION‬ ‭T‬‭ESTING‬

‭How are you ensuring that any new additions do not break the old functionality? What implemented‬
‭critical features do you need to ensure they do not break? Is it driven by requirements? Tools?‬

‭A tool that we will be using to ensure that new additions don’t negatively impact old ones is the use‬
‭of git version control, and code reviews. Using these features will ensure that we never break our‬
‭main source of code (main branch), and that new code will have to be reviewed by at least two‬
‭people in order to get merged. Additionally, before any new changes are merged to the main‬
‭branch, it will have to hit certain standards through the pipeline such as code coverage in order to‬
‭be merged. Assuming that all of the new, and old tests are passing, should be enough to validate‬
‭that the code is safe to merge into the main branch.‬

‭5.6 A‬‭CCEPTANCE‬ ‭T‬‭ESTING‬

‭How will you demonstrate that the design requirements, both functional and non-functional are‬
‭being met? How would you involve your client in the acceptance testing?‬

‭In order to check whether the design requirements are met, and have been completed to an‬
‭acceptable level by the client’s standards, is to eventually get the software to run in a live demo,‬
‭where an overlay will be brought over the video stream, to show different values such as data loss,‬
‭and compression rate. If we run out of time during the development period, and don’t have ample‬
‭time to develop an overlay, we could still create software that outputs these values to a log file,‬
‭where we can verify that the software is working as intended.‬

‭5.7 R‬‭ESULTS‬

‭What are the results of your testing? How do they ensure compliance with the requirements? Include‬
‭figures and tables to explain your testing process better. A summary narrative concluding that your‬
‭design is as intended is useful.‬

‭6‬ ‭Implementation‬

‭7‬ ‭Professionalism‬

‭8‬ ‭Closing Material‬

