
‭2‬ ‭Project Plan‬

‭2.1 T‬‭ASK‬ ‭D‬‭ECOMPOSITION‬

‭●‬ ‭Part 1: Software Testing Implementation in Python‬
‭○‬ ‭Research some well established algorithms for video compression and‬

‭decompression‬
‭■‬ ‭Choose 3-5 (or more) Algorithms to thoroughly benchmark the following‬

‭metrics:‬
‭●‬ ‭Compression Ratio‬
‭●‬ ‭Latency‬
‭●‬ ‭Complexity‬

‭○‬ ‭Find a dataset for testing the compression and decompression‬
‭■‬ ‭Considering that the project demonstration will use HDMI and many‬

‭development boards have HDMI controllers that convert the data to‬
‭RGB24, find some input data we can use to test our algorithm that‬
‭matches the RGB24 protocol.‬

‭○‬ ‭Write the Python implementation that benchmarks the algorithms chosen‬
‭beforehand‬

‭■‬ ‭Based on the performance of the algorithms we test, we will choose an‬
‭algorithm that we can implement in hardware‬

‭■‬ ‭Explore parameterizing algorithms so that a knob could be used in the‬
‭demonstration to control the latency vs compression ratio relationship.‬

‭●‬ ‭Part 2: FPGA Implementation + Demonstration‬
‭○‬ ‭Choose a development board to implement the algorithm on for the‬

‭demonstration‬
‭■‬ ‭Note: HDMI Sink + Source and FPGA large enough to support the‬

‭algorithm are the requirements for this developmental board‬
‭○‬ ‭Create a plan/schematic for a pipelined FPGA solution for the selected algorithm‬
‭○‬ ‭Implement the compression and decompression Algorithm on the FPGA and‬

‭benchmark the compression ratio and latency‬
‭○‬ ‭Gather the necessary hardware for the demonstration‬

‭■‬ ‭2 HDMI Monitors‬
‭■‬ ‭1 Development Board‬
‭■‬ ‭1 HDMI Splitter‬
‭■‬ ‭2 HDMI Cables‬

‭○‬ ‭Final debugging and testing of the entire system working together‬

‭2.2 P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬‭/T‬‭RACKING‬ ‭P‬‭ROCEDURES‬

‭We will be using the agile management style for software development. We still intend on having a‬
‭couple meetings a week and can use these meetings as SPRINTs for planning project‬
‭goals/outcomes for the next meeting.‬

‭Gitlab will track our issues when we work on the python elements of the project. We can also use‬
‭the issues board to track progress on FPGA pipelining.‬

‭2.3 P‬‭ROJECT‬ ‭P‬‭ROPOSED‬ ‭M‬‭ILESTONES‬‭, M‬‭ETRICS‬‭,‬‭AND‬ ‭E‬‭VALUATION‬ ‭C‬‭RITERIA‬

‭●‬ ‭Having a list of applicable video compression algorithms.‬
‭●‬ ‭Creating a framework to test video compression algorithms in python, and using that to‬

‭pick our final compression algorithm.‬
‭●‬ ‭Having a design laid out of the pipeline‬
‭●‬ ‭Having the FPGA finalized‬
‭●‬ ‭In an agile development process, these milestones can be refined with successive‬

‭iterations/sprints (perhaps a subset of your requirements applicable to those sprint).‬

‭2.4 P‬‭ROJECT‬ ‭T‬‭IMELINE‬‭/S‬‭CHEDULE‬

‭2.5 R‬‭ISKS‬ ‭A‬‭ND‬ ‭R‬‭ISK‬ ‭M‬‭ANAGEMENT‬‭/M‬‭ITIGATION‬

‭Python implementation will have low risks (0.2) because python compression libraries exist and are‬
‭pretty well established.‬

‭Having a design of the FPGS will have high risks because putting a compression algorithm to‬
‭hardware can be a complex, tedious, and abstract (0.5)‬

‭-‬ ‭choose an algorithm with less complexity and with plenty of documentation to make the‬
‭implementation easier‬

‭Creating a list of applicable algorithms will be pretty low risk (0.05) because our requirements for‬
‭picking algorithms are relatively simple: must be not too complex, must have low latency, must be‬
‭implementable in hardware.‬

‭An agile project can associate risks and risk mitigation with each sprint.‬

‭2.6 P‬‭ERSONNEL‬ ‭E‬‭FFORT‬ ‭R‬‭EQUIREMENTS‬

‭Task‬ ‭Man-Hours‬ ‭Explanation‬

‭Algorithm Research‬ ‭4‬ ‭Spend enough but not too‬
‭much time finding the most‬
‭optimal algorithms to run on‬
‭FPGA.‬

‭Python Benchmarking‬
‭Implementation‬

‭10‬ ‭Creating a Python program‬
‭that can benchmark the‬
‭different algorithm prototypes.‬

‭Python compression‬
‭algorithms‬

‭20‬ ‭Implementing various video‬
‭compression/decompression‬
‭algorithms in Python that take‬
‭in a video as an input.‬

‭Research and Choose a Dev‬
‭Board For The Demonstration‬

‭1-2‬ ‭Choose a dev board that has‬
‭HDMI sink & source,‬
‭preferably one made for video‬
‭processing‬

‭Create a Plan/Schematic for‬
‭the FPGA based on the‬
‭software algorithm benchmark‬

‭10‬ ‭Based on the software‬
‭implementation of the‬
‭algorithm, make a plan for the‬
‭architecture of the FPGA‬

‭Implement the Compression‬
‭part of the FPGA‬

‭20‬ ‭Write the VHDL code to‬
‭compress an input stream of‬
‭raw RGB24 values.‬

‭Testing/Debugging of‬
‭Compression Algorithm on‬
‭FPGA‬

‭10‬ ‭Test some expected values‬
‭including edge cases, debug‬
‭accordingly until fully‬
‭functional‬

‭Implement the‬
‭Decompression part of the‬
‭FPGA‬

‭20‬ ‭Write the VHDL code to‬
‭decompress an input stream of‬
‭compressed RGB24 values.‬

‭Testing of Decompression‬
‭Algorithm on FPGA‬

‭10‬ ‭Test some expected values‬
‭including edge cases, debug‬
‭accordingly until fully‬
‭functional‬

‭Gather Hardware Needed for‬
‭the Demo‬

‭1-2‬ ‭Make sure we have all required‬
‭hardware for the demo‬
‭whether that be from Deere or‬
‭the TLA‬

‭Final Debugging of the Entire‬
‭System‬

‭10‬ ‭Having all the hardware for‬
‭the demo set up and making‬
‭sure everything works‬
‭together.‬

‭2.7 O‬‭THER‬ ‭R‬‭ESOURCE‬ ‭R‬‭EQUIREMENTS‬

‭Potentially need a camera for live video.‬

